K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

#)Giải :

1. Ta xét các trường hợp

TH1 : Nếu |a+b| là số nguyên dương

=> a + b đạt giá trị dương

=> a + b = |a| + |b| (1)

TH2 : Nếu |a+b| là số nguyên âm

=> a + b đạt giá trị âm

=> a + b < |a| + |b| (2)

Từ (1) và (2) => đpcm 

2. Ta xét các trường hợp :

TH1 : Nếu |a-b| là số nguyên dương

=> a - b đạt giá trị dương

=> a - b = |a| - |b| (1)

TH2 : Nếu |a-b| là số nguyên âm

=> a - b đạt giá trị âm

=> a - b > |a| - |b| (2)

Từ (1) và (2) => đpcm

Đúng k nhỉ ???

12 tháng 7 2019

1. Với mọi \(a,b\inℚ\)ta luôn có : \(a\le\left|a\right|\)và \(-a\le\left|a\right|\)\(b\le\left|b\right|\)và \(-b\le\left|b\right|\)

\(\Rightarrow a+b\le\left|a\right|+\left|b\right|\)và \(-a-b\le\left|a\right|+\left|b\right|\)hay \(a+b\ge-\left[\left|a\right|+\left|b\right|\right]\)

Do đó : \(-\left[\left|a\right|+\left|b\right|\right]\le a+b\le\left|a\right|+\left|b\right|\)

Vậy : \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)

Dấu " = " xảy ra khi xy \(\ge\)0

2. Tương tự bài 1

16 tháng 7 2019

Bài 1: Viết mỗi biểu thức sau về dạng tổng (hiệu) 2 bình phương:

a. x2 - 2xy + 2y2 + 2y +1

= (x2 - 2xy + y2) +( y + 2y +1)

= (x-y)2 + (y+1)2

b. 4x- 12x - y+ 2y + 8

= (4x2 - 12x + 9 ) - (y2 - 2y  +1 )

= (2x-3)2 - (y-1)2

5 tháng 2 2020

a)

- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3

=> A lớn hơn hoặc = 2.

Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0

                                             => x + 3 = 0

                                                         x = -3

Vậy..........

b)

Ta có: B lớn hơn hoặc = / x - 1 /  + / x - 3 / = / x - 1 /  + / 3 - x /

Mà / x - 1 /  + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x /  = /2/ = 2

=> B lớn hơn hoặc = 2.

Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0.   (1)

Giải (1) được x = 2 TM.

Vậy min B = 2 <=> x=2.

6 tháng 8 2019

a,Ta cần tìm hệ số tỉ lệ nghịch của y đối với x,từ đó tìm được giá trị của y khi x = 6,x = -10

Vì x và y là hai đại lượng tỉ lệ nghịch,nên ta có công thức tổng quát :

\(y=\frac{a}{x}\)

Thay x = 8 và y = 15 ta có : \(15=\frac{a}{8}\Leftrightarrow a=15\cdot8=120\)

Do đó : \(y=\frac{120}{x}\)

b,x = 6 thì y = \(\frac{120}{6}=20\) ;x = -10 thì y = \(\frac{120}{-10}=-12\)

c, y = 2 thì \(2=\frac{120}{x}\Leftrightarrow x=60\) ; y = -30 thì \(-30=\frac{120}{x}\Leftrightarrow x=-40\)

27 tháng 3 2020

a)15:8

b)6:15;-10:15

c)8:2;-30:15

mình chỉ làm bừa thôi nếu sai thì đừng chửi mình nhé

9 tháng 8 2019

Giúp vs ạ !

9 tháng 8 2019

Giả sử \(x=\frac{a}{m},y=\frac{b}{m}(a,b,m\inℤ,m\ge0)\)

Vì x < y nên ta suy ra a < b

Ta có : \(x=\frac{a}{m},y=\frac{b}{m}\Leftrightarrow x=\frac{2a}{2m},y=\frac{2b}{2m}\)

Mà a < b nên a + a < a + b <=> 2a < a + b

Do 2a < a + b thì x < y                                               [1]

Lại có : a < b nên a + b < b + b <=> a + b < 2b           

Mà a + b < 2b <=> x < z                                           [2]

Từ 1 và 2 suy ra x < z < y \((đpcm)\)

23 tháng 9 2020

a) B = | 2x - 3 | - 7

| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7

Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2

=> MinB = -7 <=> x = 3/2

C = | x - 1 | + | x - 3 |

= | x - 1 | + | -( x - 3 ) | 

= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2

Đẳng thức xảy ra khi ab ≥ 0

=> ( x - 1 )( 3 - x ) ≥ 0

=> 1 ≤ x ≤ 3

=> MinC = 2 <=> 1 ≤ x ≤ 3

b) M = 5 - | x - 1 |

- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MaxM = 5 <=> x = 1

N = 7 - | 2x - 1 |

- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7 

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

=> MaxN = 7 <=> x = 1/2

13 tháng 8 2019

\(\frac{x}{y}=a\Rightarrow x=ay\)

\(\Rightarrow\frac{x+y}{x-y}=\frac{ay+y}{ay-y}=\frac{y\left(a+1\right)}{y\left(a-1\right)}=\frac{a+1}{a-1}\)

13 tháng 8 2019

\(\frac{a}{b}=2\Rightarrow a=2b;\frac{c}{b}=3\Rightarrow c=3b\Rightarrow c-b=2b\)

\(\Rightarrow a=c-b\)

\(\Rightarrow\frac{a+c}{b+c}=\frac{c-b+b}{b+c}=\frac{b}{b+c}\)