Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).
Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )
\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)
\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .
Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).
a, \(A=\frac{n+7}{n+2}=\frac{n+2+5}{n+2}=\frac{5}{n+2}\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta lập bảng
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
b, \(B=\frac{n+5}{n-2}=\frac{n-2+7}{n-2}=\frac{7}{n-2}\)
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng
n - 2 | 1 | -1 | 7 | -7 |
n | 3 | 1 | 9 | -5 |
c, \(C=\frac{2n+13}{n+1}=\frac{2\left(n+1\right)+11}{n+1}=\frac{11}{n+1}\)
\(\Rightarrow n+1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng
n + 1 | 1 | -1 | 11 | -11 |
n | 0 | -2 | 10 | -12 |
d) Để D là số nguyên <=> \(\frac{3n+7}{2n+3}\)là số nguyên
<=> \(3n+7⋮2n+3\)
<=> 2(3n + 7) \(⋮\) 2n + 3
<=> 6n + 14 \(⋮\)2n + 3
<=> 3(2n + 3) + 5 \(⋮\)2n + 3
<=> 5 \(⋮\)2n + 3 (vì 3(2n + 3) \(⋮\)2n + 3)
<=> 2n + 3 \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng:
2n + 3 | 1 | -1 | 5 | -5 |
n | -1 | -2 | 1 | -4 |
Vậy ....
a) A = 1 + 22 + 24 + ... + 22016
=> 4A = 22 + 24 + ... + 22018
=> 4A - A = 22018 - 1
=> 3A = 22018 -1
Theo bài ra : 3A + 1 = 2n
=> 22018 - 1 + 1 = 2n
=> 22018 = 2n
=> n = 2018
b) Ta có :
3n + 1 chia hết cho 2n - 3
=> 6n - 3n + 1 chia hết cho 2n - 3
=> 3.(2n-1) + 1 chia hết cho 2n - 3
=> 3 chia hết cho 2n - 3 hay 2n - 3 \(\in\) Ư(3) = {1;3}
=> 2n \(\in\) {4;6}
=> n \(\in\) {2;3}
1) Gọi tổng của 6 số tự nhiên đó là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
Ta có \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
\(=6a+15\)
\(=6.a+12+3\)
\(=6.\left(x+2\right)+3\)
Vì \(6.\left(x+2\right)⋮6\)nên \(6.\left(x+2\right)+3\)chia 6 dư 3
Vậy tổng của 6 số tự nhiên liên tiếp không chia hết cho 6
2) Ta có 3 là số lẻ nên 32018 là số lẻ
11 là số lẻ nên 112017 là số lẻ
Do đó 32018-112017là số chẵn nên chia hết cho 2
3)\(n+4⋮n\)
có \(n⋮n\)nên để \(n+4⋮n\)thì \(4⋮n\)
\(\Rightarrow n\inƯ\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
4)\(3n+7⋮n\)
có \(3n⋮n\)nên để \(3n+7⋮n\)thì \(7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
Để \(\frac{2n+5}{n+3}\)là số tự nhiên thì :\(2n+5⋮n+3\)
\(\hept{\begin{cases}2n+5⋮n+3\\n+3⋮n+3\end{cases}}\)\(=>\hept{\begin{cases}2n+5⋮n+3\\2n+6⋮n+3\end{cases}=>2n+6-2n-5⋮n+3}\)
(=) 1\(⋮\)n+3
=> n+3\(\in\)Ư(1)
=> n ko tồn tại
\(Tadellco::\left(\right)\left(\right)\)
\(\frac{2n+5}{n+3}\in Z\Rightarrow2n+5⋮n+3\Rightarrow2\left(n+3\right)-\left(2n+5\right)=1⋮n+3\Rightarrow n+3\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{-4;-2\right\}\)
b, \(Tadellco\left(to\right)\left(rim\right)\)
\(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\Rightarrow...........\)
\(13x=13\Leftrightarrow x=1\)
\(\left(x-1\right)\left(y+3\right)=-5\)
\(TH1\hept{\begin{cases}x-1=-5\\y+3=1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-2\end{cases}}}\)
\(TH2\hept{\begin{cases}x-1=5\\y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=2\end{cases}}}\)
\(2n+1⋮n-3\)
\(2n-6+7⋮n-3\)
\(7⋮n-3\)
\(\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Tự lập bảng ....
Tương tự bài tiếp theo nhen
Mấy bài kia chắc c lm đc r nhỉ
2. a) \(2n+1⋮n-3\)
\(\Leftrightarrow2.\left(n-3\right)+7⋮n-3\)
\(\Leftrightarrow7⋮n-3\)
\(\Leftrightarrow n-3\in\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow n\in\left\{-4;2;4;10\right\}\) ( thỏa mãn n nguyên )
Vậy \(n\in\left\{-4;2;4;10\right\}\)
b) \(3n+8⋮n+1\)
\(\Leftrightarrow3.\left(n+1\right)+5⋮n+1\)
\(\Leftrightarrow5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{-5;-1;1;5\right\}\)
\(\Leftrightarrow n\in\left\{-6;-2;0;4\right\}\) ( thỏa mãn n nguyên )
Vậy \(n\in\left\{-6;-2;0;4\right\}\)
~~~~~~~~~~ Học tốt nha ~~~~~~~~~~~~~~~~~
https://olm.vn/hoi-dap/detail/56174930308.html
Tham khảo vài câu ở đây nha !
Bạn ơi mình ko vào được