K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

a) n+5\(⋮\)n-1

=> n-1\(⋮\)n-1

=> (n+5)-(n-1)\(⋮\)n-1

=> n+5-n+1 \(⋮\)n-1

=> 6 \(⋮\)n-1

=> n-1 \(\in\)Ư(6) ={1;2;3;6; -1; -2; -3; -6}

=> n\(\in\){ 2 ; 3; 4;7; 0; -1; -2; -5}

Vậy...

\(a,n+5⋮n-1\)

\(n-1+6⋮n-1\)

Vì \(n-1⋮n-1\)

\(6⋮n-1\)

\(\Rightarrow n-1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Ta lập bảng xét giá trị 

n-11-12-23-36-6
n203-14-27-5
13 tháng 2 2016

a) n+5 chia hết cho n-1

Ta có: n+5 = (n-1)+6 

=> n-1  và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}

=> n\(\in\){0;2;-1;3;-2;4;-5;7}

b) n+5 chia hết cho n+2

Ta có: n+5 = (n+2)+3 

=> n+2  và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}

=> n\(\in\){-3;-1;-5;1;}

c) 2n-4 chia hết cho n+2

Ta có: 2n-4 = 2(n+2)-8

=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}

=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}

d) 6n+4 chia hết cho 2n+1

Ta có: 6n+4 = 3(2n+1)+1 

=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}

=> n\(\in\){-1;0}

e) 3-2n chia hết cho n+1

Ta có: 3-2n= -2(1+n)+5 

=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}

=> n\(\in\){-2;0;-6;4;}

24 tháng 1 2016

=>(n2+3n)+(3n+9)+2 chia hết cho n+3

=>n(n+3)+3(n+3)+2 chia hết cho n+3

=>(n+3)(n+3)+2 chia hết cho n+3

Mà (n+3)(n+3) chia hết cho n+3

=>2 chia hết cho n+3

=> n+3 thuộc Ư(2)={1;2;-1;-2}

=>n thuộc {-2;-1;-4;-5}

24 tháng 1 2016

Để A nguyên

=>n2-3n+1 chia hết cho n+1

=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1

=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1

Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1

=>1 chia hết cho n+1

=>n+1 thuộc Ư(1)={1;-1}

=>n thuộc {0;-2}

15 tháng 1 2016

a,n=1,2,3,4

 

12 tháng 3 2020

k cho mik

a) n+5 chia hết cho n-1

=>n-1+6 chia hết cho n-1

=>6 chia hết cho n-1

=> n-1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}

Bảng bn tự kẻ nha còn các câu khác làm tương tự

23 tháng 7 2020

a) Có: \(29⋮n\)

\(\Rightarrow n\inƯ\left(29\right)=\left\{\pm1;\pm29\right\}\)

Vậy \(n\in\left\{\pm1;\pm29\right\}\).

b) Có: \(18⋮n-2\)

\(\Rightarrow n-2\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)

\(\Rightarrow n\in\left\{3;1;4;0;5;-1;8;-4;11;-7;20;-16\right\}\)

Vậy \(n\in\left\{3;1;4;0;5;-1;8;-4;11;-7;20;-16\right\}\)

c) Có: \(n+3⋮n+1\)

\(\Rightarrow n+1+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)

Vậy \(n\in\left\{0;-2;1;-3\right\}\).

d) Có: \(2n+3⋮2n+1\)

\(\Rightarrow2n+1+2⋮2n+1\)

\(\Rightarrow2⋮2n+1\)

Mà 2n+1 là số nguyên lẻ nên \(2n+1=\pm1\)

\(\Rightarrow n\in\left\{0;-1\right\}\)

Vậy \(n\in\left\{0;-1\right\}.\)

23 tháng 7 2020

a) 29 chia hết cho 

=> n thuộc Ư(29)

Mà Ư(29) = 1 ; 29

Vậy n = 1 ; 29

c)n+3 chia hết cho n+1 

= (n+1) + 2 chia hết cho n +1

Bỏ n+1 vì n+1 chia hết cho n+1

Có : 2 chia hết cho n+1

=> n+1 là Ư(2)

Ư(2) = 1 ; 2

=> n = 2-1 ; 1-1

=> n = 1 ; 0

d)2n+3 chia hết cho 2n-1

Bỏ 2 vì 2 chia hết cho 2

Có : n+3 chia hết cho n + 1

 (n+1) + 2 chia hết cho n +1

Bỏ n+1 vì n+1 chia hết cho n+1

Có : 2 chia hết cho n+1 => n+1 là Ư(2)

Ư(2) = 1 ; 2

n = 2-1 ; 1-1

n = 1 ; 0

8 tháng 8 2023

a, Ta có : \(\text{n + 5 = (n - 1)+6}\)

Vì \(\text{(n-1) ⋮ n-1}\)

Nên để \(\text{n+5 ⋮ n-1}\) `n-1`

Thì \(\text{6 ⋮ n-1}\) 

\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)

\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)

\(\text{________________________________________________________}\)

b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)

Vì \(\text{2(n+2) ⋮ n+2}\)

Nên để \(\text{2n-4 ⋮ n+2}\)

Thì \(\text{8 ⋮ n+2}\)

\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)

\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )

\(\text{_________________________________________________________________ }\)

c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)

Vì \(\text{3(2n+1) ⋮ 2n+1}\)

Nên để\(\text{ 6n+4 ⋮ 2n+1}\)

Thì \(\text{1 ⋮ 2n+1}\)

\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)

\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)

\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )

\(\text{_______________________________________}\)

Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)

Vì \(\text{-2(n+1) ⋮ n+1}\)

Nên để \(\text{3-2n ⋮ n+1}\)

Thì\(\text{ 5 ⋮ n + 1}\)

\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )

 

7 tháng 7 2015

Mình làm vd 2 bài nha:

a) n+6 chia hết cho n+2

n+2 chia hết cho n+2

nên (n+6)-(n+2) chia hết cho n+2

4 chia hết cho n-2

=> n-2 = 1;-1;2;-2;4;-4

=> n=3;1;4;0;6

d) n^2 +4 chia hết cho 4

n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1

=> (n^2+2n+1)-(n^2+4) chia hết cho n-1

=> 2n+1-4 chia hết cho n-1

=> 2n - 3 chia hết cho n-1

 n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1

=> (2n-2)-(2n-3) chia hết cho n-1

=> 1 chia hết cho n-1

=> n-1 = 1;-1

=> n=0

7 tháng 7 2015

Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}