K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2018

Bài này trong sách gì?

6 tháng 12 2018

a) Tam giác ABC có AB=AC nên ABC là tam giác cân => gócB = gócC (2 góc đáy)

Bài 1) 

a) Xét ∆ vuông ABK và ∆ vuông EBK ta có : 

AK = KC 

BK chung 

=> ∆ABK = ∆EBK ( ch-cgv)

=> AB = BE

=> ∆ABE cân tại B 

Mà ABK = EBK 

Hay BK là phân giác ABE 

=> ∆ABE cân có BK là phân giác 

=> BK là trung tuyến đồng thời là đường cao

=> BK\(\perp\)AE

b) Gọi H là giao điểm BK và DC 

Xét ∆ vuông AKD và ∆ vuông EKC ta có

AK = KE 

AKD = EKC ( đối đỉnh) 

=> ∆AKD = ∆EKC ( cgv-gn)

=> AD = EC ( tương ứng) 

Mà ∆ABE cân tại B (cmt)

=> AB = AE 

Mà AB + AD = BD 

BE + EC = BC 

=> BD = BC 

=> ∆BDC cân tại B 

=> BDC = \(\frac{180°-B}{2}\)

Vì ∆ABE cân tại B 

=> BAE = \(\frac{180°-B}{2}\)

=> BAE = BDC

Mà 2 góc này ở vị trí đồng vị 

=> AE//DC 

Vì H là giao điểm DC và BK

=> BH là phân giác DBC 

Mà ∆BDC cân tại B (cmt)

=> BK đồng thời là trung tuyến và đường cao

=> BH \(\perp\)DC

Hay BK \(\perp\)DC 

Bài 2)

Vì ∆ABC cân tại A

=> AB = AC 

=> ABC = ACB 

Xét ∆ vuông ABK và ∆ vuông ACE ta có : 

AB = AC 

A chung 

=> ∆ABK = ∆ACE ( ch-gn)

=> ABK = ACE ( tương ứng) 

Xét ∆AOB và ∆AOC ta có : 

AB = AC 

ABK = ACE 

AO chung

=> ∆AOB = ∆AOC (c.g.c)

=> BAO = CAO 

Hay AO là phân giác BAC 

b) Vì ∆AKB = ∆AEC (cmt)

=> AE = AK 

Mà AB = AC 

=>EB = KC

Xét ∆ vuông KOC và ∆ vuông EOB ta có 

EB = KC 

EOB = KOC ( đối đỉnh) 

=> ∆KOC = ∆EOB ( cgv-gn)

=> OB = OC 

=> ∆OBC cân tại O 

c) Xét ∆ cân ABC ta có :

AO là phân giác BAC 

AI là trung tuyến BC 

=> AI đồng thời là phân giác và là đường cao

=> A , O , I thẳng hàng

Theo đề bài ta có :

góc ABD = góc DBC

mà AB // Dy nên :

góc ABD = góc BDy

góc DBC = góc ADB

vì Bx // Et nên :

góc BDE = góc DEt

góc DBC = góc tEC

=> góc tEC = góc DEt

=> Et là tia phân giác của góc CED

đây giải có khi sai nên trước khi chép vào cân nhắc kĩ nhé

29 tháng 7 2019

bạn ơi bạn biết vẽ hình ko 

1 tháng 5 2019

a, xét 2 tam giác vuông AEC và AED có:

            AC=AD(gt)

            AE cạnh chung

=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)

=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)

b, xét t.giác AIC và t.giác AID có:

           AI cạnh chung

         \(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)

          AC=AD(gt)

=> t.giác AIC=t.giác AID(c.g.c)

=> IC=ID=> I là trung điểm của CD(1)

\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)

từ (1) và (2) suy ra AE là trung trực của CD

A B C D E I

4 tháng 10 2019

có vẽ hình ko

29 tháng 7 2019

a) Xét tam giác BAD và tam giác BAC, có:

          góc BAD = góc BAC = 90o              (gt)

          BA: cạnh chung

          góc ABD = góc ABC                (Vì AB là p/g của BC)

Nên: Tam giác BAD = tam giác BAC                      ( g - c - g)

=> BD = BC                     (2 cạnh t/ư)

Ta có: AC vuông góc với AB                            (gt)

           AC vuông góc với CF                            (gt)

   => AB // CF                    (Quan hệ từ _|_ -> //)

Nên: góc ABC = góc FCB                         (2 góc so le trong = nhau)

Lại có: CD vuông góc với CF                       (gt)

            BF vuông góc với CF                       (gt)

=> CD // BF                     (Quan hệ từ _|_ -> //)

Hay: AC // BF

Do đó: góc ACB = góc FBC                       (2 góc so le trong = nhau)

Xét tam giác BFC và tam giác CAB, có:

          góc FBC = góc ACB                         (cmt)

          BC: cạnh chung

          góc FCB = góc ABC                         (cmt)

Nên: tam giác BFC = tam giác CAB                              ( g - c - g)

   => góc BAC = góc CFB                        ( 2 góc t/ư)

 Mà: góc BAC = 90o

Do đó: góc CFB = góc BAC = 90o

Xét tam giác BEF và tam giác BCF, có:

          góc EBF = góc CBF                       (Vì BF là p/g của góc CBE)

          BF: cạnh chung

          góc BFE = góc BFC = 90o                       (cmt)

Nên: tam giác BEF = tam giác BCF                      ( g - c - g)

Vậy góc BCF = góc BEF                        ( 2 góc t/ư)

Hay: góc BCE = góc BEC                        (đpcm)

b) Trong tam giác ABC, có:

            góc A + góc B + góc C = 180o                   (T/c tổng 3 góc trong 1 tam giác)

Vậy ........

c)Ta có: góc BFC = 90o                   (cm câu a)

Vậy BF vuông góc với CE                         (đpcm)

Mk ko chắc chắn ở câu b nhé!