Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 khỏi cần làm dễ cô ra rồi
b) => x - 2 \(\in\) ƯC ( 32; 18)
Mà Ư (32) = {1; 2 ; 4 ; 8; 16 ; 32 }
Ư(18) = { 1 ; 2 ; 3 ; 6 ; 8 ; 18}
=> ƯC ( 32 ; 18) = { 1 ; 2 ; 8 }
đến đây chác làm được rồi
x = 3 ; 4 ; 10
câu c như thế thôi
=> x - 2 \(\in\)
Bài 1.
Nếu số tự nhiên a chia hết cho số tự nhiên b thì ta nói a là bội của b, còn b là ước của a.
Bài 2.
a/ 5*6 \(⋮\)3 \(\Rightarrow\) * = 1; 4; 7 ( chọn số nào tùy bạn )
b/ 6*5 \(⋮\)9 \(\Rightarrow\)* = 8.
c/ 46* \(⋮\)3; 5 \(\Rightarrow\)* = 5.
d/ *81* \(⋮\)2; 3; 5; 9
\(\Rightarrow\)*1 \(\in\){ 1; 2; 3; ...; 9 ) ;
*2 : ta thấy :
- Số chia hết cho 2 là số có tận cùng là các số chẵn.
- Số chia hết cho 5 là số có tận cùng là 0 hoặc 5.
- Số chia hết cho 9 là số có tổng các chữ số chia hết cho 9.
- Số chi hết cho 3 tương tự số chia hết cho 9.
\(\Rightarrow\)*81* phải là số có tận cùng là 0 hoặc 5 và tổng các số đó phải chi hết cho 9.
\(\Rightarrow\)Vậy *2 = ...
Bài 3.
a/ Ta có : 56 \(⋮\)4, 24 \(⋮\)4.
\(\Rightarrow\)( 56 + 24 ) \(⋮\)4.
b/ ( làm tương tự phần a)
#Băng Băng
1/ Điền vào chỗ trống :
Nếu có số tự nhiên a chia hết cho số tự nhiên b thì ta nói a là bội của b, còn b gọi là ước của a.
2/ Điền vào dấu * để thỏa mãn :
a/ 5*6 chia hết cho 3 :
Để số 5*6 chia hết cho 3 thì tổng các chữ số phải chia hết cho 3.
\(\Rightarrow\) ( 5 + * + 6 ) chia hết cho 3
\(\Rightarrow\) 11 + * chia hết cho 3
\(\Rightarrow\) * = 1 ; 4 ; 7
Vậy các số cần tìm là : 516 ; 514 ; 517
b/ 6*5 chia hết cho 9
Để số 6*5 chia hết cho 9 thì tổng các chữ số phải chia hết cho 9
\(\Rightarrow\) ( 6 + * + 5 ) chia hết cho 9
\(\Rightarrow\) 12 + * chia hết cho 9
\(\Rightarrow\) * = 6
Vậy số cần tìm là : 665
c/ 46* chia hết cho cả 3 và 5
Để số 46* chia hết cho cả 3 và 5 thì tổng các chữ số phải chia hết cho 3 và chữ số tận cùng = 0 hoặc 5
\(\Rightarrow\) ( 4 + 6 + * ) chia hết cho 3 và 5
\(\Rightarrow\) 10 + * chia hết cho 3 và 5
\(\Rightarrow\) * = 5
Vậy số cần tìm là : 465
d/ *81* chia hết cho 2 ; 3 ; 5 ; 9 ( .... )
Để *81* chia hết cho 2 ; 3 ; 5 ; 9 thì tổng các chữ số phải chia hết cho 3 ; 5 và chữ số tận cùng phải = 0
\(\Rightarrow\) ( * + 8 + 1 + 0 ) chia hết cho 2 ; 3 ; 5 ; 9
\(\Rightarrow\) * + 9 chia hết cho 2 ; 3 ; 5 ; 9
\(\Rightarrow\) * = 9
Vậy số cần tìm là : 9810
3/ Không tính kết quả ....... :
a/ 56 + 24
56 \(⋮\)4
24 \(⋮\)4
Vậy tổng này chia hết cho 4
b/ 72 - 15
72 \(⋮\)4
15 không chia hết cho 4
Vậy hiệu này không chia hết cho 4
gọi chư số tận cùng của n là a => n5=.......a => n5-n=......a-....a=........0 chia hết cho 5
Chứng minh tồn tại hai số có tổng hoặc hiệu chia hết cho 100 - Các dạng toán khác - Diễn đàn Toán học
- Nếu có hai số cùng chia hết cho 100 thì bài toán được chứng minh
- Nếu có đúng một số chia hết cho 100, 51 số còn lại không chia hết cho 100
Xét 50 cặp số dư : (1;99);(2;98);(3;97);...;(50;50)
Theo nguyên lí Dirichlet, tồn tại hai số mà số dư của chúng khi chia cho 50 là một trong 50 cặp số trên.
Giả sử số dư của hai số đó rơi vào cặp (a;b) (với a+b=100)
- Nếu cả hai số cùng chia 100 dư a (hoặc dư b) thì hiệu của chúng chia hết cho 100
- Nếu hai số, một chia 100 dư a, một số chia 100 dư b thì tổng của chúng chia hết cho 100
Bài toán được chứng minh
- Nếu cả 52 số đều không chia hết cho 100. Tương tự như trên
Ta có đpcm
1.a) x = 0
b) x = 1 , y = 2
c) x = 9
2.x = 6
mik ko bik có đúng ko nhưng dù sao cx chúc b học tốt nhé ^^
a) ab - ba = ( 10a + b ) - ( 10b + a ) = 10a + b - 10b - a = ( 10a - a ) + ( b - 10b ) = 9a - 9b = 9( a - b ) chia hết cho 9
=> ab - ba chia hết cho 9
b) abcabc = abc . 1001 = abc . ( 7 . 13 . 11 ) chia hết cho 11
=> abcabc chia hết cho 11
c) aaa = a . 111 = a . ( 3 . 37 ) chia hết cho 37
=> aaa chia hết cho 37
vì 927 chia hết cho 9 =>200a chia hết cho 9
mà 2 +0+0=2
=>a=7