Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)
\(=\frac{-5}{9}.\left(\frac{3}{10}-\frac{4}{10}\right)\)
\(=\frac{-5}{9}.\frac{-1}{10}\)
\(=\frac{5}{90}\)
\(=\frac{1}{18}\)
b,\(\frac{2}{3}+\frac{-1}{3}+\frac{7}{15}\)
\(=\frac{10}{15}-\frac{5}{15}+\frac{7}{15}\)
\(=\frac{12}{15}\)
\(=\frac{4}{5}\)
c, \(\frac{3}{8}.3\frac{1}{3}\)
\(=\frac{3}{8}.\frac{10}{3}\)
\(=\frac{10}{8}\)
\(=\frac{5}{4}\)
d, \(\frac{-3}{5}+0,8.\left(-7\frac{1}{2}\right)\)
\(=\frac{-3}{5}+\frac{4}{5}.\frac{-15}{2}\)
\(=\frac{-3}{5}+\frac{-60}{10}\)
\(=\frac{-3}{5}+\frac{-30}{5}\)
\(=\frac{-33}{5}\)
e, \(\frac{2}{5}.8\frac{1}{3}+1\frac{2}{3}.\frac{2}{5}\)
\(=\frac{2}{5}.\left(8\frac{1}{3}+1\frac{2}{3}\right)\)
\(=\frac{2}{5}.10\)
\(=4\)
f, \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)
\(=\frac{3}{7}.\left(19\frac{1}{3}-33\frac{1}{3}\right)\)
\(=\frac{3}{7}.-14\)
\(=-6\)
~Study well~
#KSJ
bài 1
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=>\frac{a+b+c}{b+c+a}=1=>a=b=c\)
bài 2
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{a+b+c}\)
bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> \(\frac{a}{b}=1\)
\(\frac{b}{c}=1\)
\(\frac{c}{a}=1\)
=> a=b (1)
b=c (2)
c=a (3)
=> a=b=c
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
\(\Leftrightarrow\frac{13}{36}x=-\frac{8}{45}\)
\(\Rightarrow x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right).\left(-\frac{2}{3}\right)+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow-\frac{4}{9}x+\frac{1}{3}+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow\frac{4}{9}x=\frac{77}{60}\)
\(\Rightarrow x=\frac{231}{80}\)
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
=> \(\frac{4}{9}x-\frac{1}{3}x+\frac{2}{5}-\frac{2}{9}+\frac{1}{4}x=0\)
=> \(\left(\frac{4}{9}x-\frac{1}{3}x+\frac{1}{4}x\right)+\left(\frac{2}{5}-\frac{2}{9}\right)=0\)
=> \(\frac{13}{36}x+\frac{8}{45}=0\)
=> \(\frac{13}{36}x=-\frac{8}{45}\)
=> \(x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}+\frac{1}{5}=\frac{-3}{4}\)
=> \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}=-\frac{19}{20}\)
=> \(\frac{2}{3}x-\frac{1}{2}=\left(-\frac{19}{20}\right):\left(-\frac{2}{3}\right)=\left(-\frac{19}{20}\right)\cdot\left(-\frac{3}{2}\right)=\frac{57}{40}\)
=> \(\frac{2}{3}x=\frac{57}{40}+\frac{1}{2}=\frac{77}{40}\)
=> \(x=\frac{77}{40}:\frac{2}{3}=\frac{77}{40}\cdot\frac{3}{2}=\frac{231}{80}\)
a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)
Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Theo đề: \(\left|x-2y\right|=5\)
\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )
\(x-2y=-5\) (nếu \(x< 2y\) )
Vậy có hai trường hợp
TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)
\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)
TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)
\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)
b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)
Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)
\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)
\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)
c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
= \(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)
= \(\frac{2x+2y+2z}{x+y+z}\)
= \(\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2
=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x
=> y + z + x + 1 = 3x
=> 1/2 + 1 = 3x
=> 3/2 = 3x
=> x = 3/2 : 3 = 1/2
=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y
=> x + z + y + 2 = 3y
=> 1/2 + 2 = 3y
=> 5/2 = 3y
=> y = 5/2 : 3 = 5/6
=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z
=> x + y + z - 3 = 3z
=> 1/2 - 3 = 3z
=> 3z = -5/2
=> z = -5/2 : 3 = -5/6
Vậy ...
\(\frac{5}{6}x+\frac{1}{2}-\frac{1}{3}x=0.75x-\frac{7}{8}\)
\(\frac{5}{6}x-\frac{1}{3}x-\frac{3}{4}x=-\frac{7}{8}-\frac{1}{2}\) ( 3/4x là 0,75x nha)
\(x\times\left(\frac{10}{12}-\frac{4}{12}-\frac{9}{12}\right)=-\frac{7}{8}-\frac{4}{8}\)
\(x\times\left(-\frac{3}{12}\right)=-\frac{11}{8}\Rightarrow x=\frac{11}{8}\div\left(-\frac{3}{12}\right)=-\frac{11}{2}\)
\(10+10\cdot90=10+900=910\)
\(\frac{2}{3}\cdot8\frac{9}{1}=\frac{2}{3}\cdot72=48\)
10 + 10 x 90 = 910
\(\frac{2}{3}.8\frac{9}{1}=\frac{34}{3}\)
P/s : ko biết
k nhé