K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

bạn tự vẽ hình nhé :)
a) ABCE là hình thang có 2 cạnh bên song song => AC=BE mà AC=BD => BE=BD => tam giác BDE cân tại B
b) tam giác BDE cân tại B => góc BDC=góc E mà góc ACD=góc E (2 góc đồng vị, AC//BE) => góc BDC= góc ACD
    từ đó, chứng minh đc tg ACD=BDC (c-g-c)
c) tg ACD=BDC => góc ADC=góc BCD (2 góc tương ứng) => đpcm 

11 tháng 7 2019

tg BDE cân tại B:

ta có:ACD=BAC(AB//CD) 
 mà ACD =BEC =>BEC=BAC 

xét tg ABC va tg ECB 
+BC chung 
+ACB=EBC(so le trong) 
+BEC=BAC(cm trên ) 
=>tam giac ABC =tam giac ECB 
=>BDC=BEC 
ma `BEC=ACD(đồng vị)

=>ACD=BDC 
xét tg ACD va tg BDC,ta có : 
+DC chung 
+ACD=BDC 
+AC=BD(gt) 
=>tg ACD = tg BDC 
=>ADC=BCD 
=>ABCD la hình thang cân (đpcm) 

7 tháng 9 2019

vì oa=ob

=>tam giác aob là tam giác cân tại o (đn tam giác cân)

=>góc oab=góc oba

   mà  ab//cd 

=> abcd là hình thang cân

đúng thì k cho mik vs ạ

15 tháng 6 2019

a) Xét tam giác ABC và tam giác BAD, ta có:

AB: cạnh chung

AC=AD (ABCD:hình thang cân)

BC=AD (ABCD: hình thang cân)

  =>Tam giác ABC = tam giác BAD (c-c-c)

  =>\(\widehat{ACB}\)=\(\widehat{BDA}\)(2 góc t/ứng)

  Ta có:

\(\widehat{ACD=}\widehat{ACB}\)+\(\widehat{BCD}\)

BDC^ = BDA^ + ADC^

ACD^ = BDC^ (ABCD: hình thang cân)

ACB^ = BDA^ (cmt)

  =>BCD^ = ADC^

  Ta lại có AB//CD (gt):

  => ABC^ = BCD^ (2 góc sole trong)

       BAD^ = ADC^ (2 góc sole trong)

       BCD^ = ADC^ (cmt)

  => ABC^ = BAD^

  Ta có ME//BC (gt):

  => MEA^ = ABC^ (2 góc sole trong)

  Mà ABC^ = BAD^ (cmt)

  => MEA^ = BAD^

Mặt khác: MAE^ = BAD^ ( 2 góc đối đỉnh)

  => MEA^ = MAE^

  => Tam giác MAE cân tại M.

15 tháng 6 2019

MIK xin lỗi, mik đánh sai đề bài, sửa lại như sau:

a) Tam giác MAE cân

b) AF = DE