Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-1-\frac{1}{2}-...-\frac{1}{1009}\)
\(A=\frac{1}{1010}+\frac{1}{2000}+...+\frac{1}{2018}\)
\(B=3028.\left(\frac{1}{1010.2018}+...+\frac{1}{2018.1010}\right)\)
\(B=\frac{3028}{1010.2018}+...+\frac{3028}{2018.1010}\)
\(B=\frac{1}{1010}+\frac{1}{2018}+...+\frac{1}{2018}+\frac{1}{1010}\)
\(B=2.\left(\frac{1}{1010}+...+\frac{1}{2018}\right)\)
\(=>\frac{A}{B}=\frac{1}{2}\)
\(\frac{1}{2^1}+\frac{2}{3^2}+\frac{3}{4^3}+...+\frac{99}{100^{99}}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)
Vậy \(\frac{1}{2^1}+\frac{2}{3^2}+\frac{3}{4^3}+...+\frac{99}{100^{99}}<1\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)
Vậy \(A>\frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)
\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)
\(VayA>\frac{1}{100}=B\)
Bạn tham khảo link này nha:
https://olm.vn/hoi-dap/detail/81397951211.html
ảm ơn cậu nha đã tìm bài giúp mk, sẽ sẽ tích cho cậu
\(B=\frac{1}{1+3}+\frac{1}{1+3+5}+...+\frac{1}{1+3+...+101}\)
\(B=\frac{1}{4}+\frac{1}{9}+...+\frac{1}{51}\)
\(B=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+...+\frac{1}{3\cdot17}\)
\(B=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{3}-\frac{1}{17}\)
\(B=\frac{1}{2}-\frac{1}{17}\)
\(B=\frac{15}{34}\)
TU DO \(=>\frac{15}{34}< \frac{3}{4}\)HOAC \(B< \frac{3}{4}\)
CHUC BAN HOC TOT :))
Ta có: \(1+3=\frac{\left(1+3\right).\left[\left(3-1\right):2+1\right]}{2}=\frac{4.2}{2}=2.2\)
\(1+3+5=\frac{\left(1+5\right).\left[\left(5-1\right):2+1\right]}{2}=\frac{6.3}{2}=3.3\)
\(.................\)
\(1+3+5+...+101=\frac{\left(1+101\right).\left[\left(101-1\right):2+1\right]}{2}=\frac{102.5}{2}=51.51\)
\(\Rightarrow B=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{51.51}\)
\(\Rightarrow B< \frac{1}{2.2}+\frac{1}{2.3}+...+\frac{1}{50.51}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{50}-\frac{1}{51}\)
\(\Rightarrow B< \left(\frac{1}{4}+\frac{1}{2}\right)-\frac{1}{51}\)
\(\Rightarrow B< \frac{3}{4}-\frac{1}{51}< \frac{3}{4}\)
\(\Rightarrow B>\frac{3}{4}\left(đpcm\right)\)
a)Gọi 2 số lẻ liên tiếp là:n và n+2;ƯCLN(n;n+2)=d
=>n chia hết cho d và n+2 chia hết cho d
=>(n+2)-n chia hết cho d
=>2 chia hết cho d
=>d thuộc Ư(2)={1;2}
Mà n và n+2 là số lẻ =>ƯCLN(n;n+1)=1
=> điều phải chứng minh
b)
Ta có:1/2-1/4+1/8-1/16+1/32-1/64=(1/2-1/4)+(1/8-1/16)+(1/32-1/64)
=(2/4-1/4)+(2/16-1/16)+(2/64-1/64)
=1/4+1/16+1/64
=16/64+4/64+1/64
=21/64=63/192
Ta có:1/3=64/192
Mà63/192<64/192
=>điều phải chứng minh