Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (d) đi qua M(-2;3) và có VTCP \(\overrightarrow{u}\)=(1;-4)
(d)\(\left\{{}\begin{matrix}quaM\left(-2;3\right)\\\overrightarrow{u}=\left(1;-4\right)\end{matrix}\right.\)
ptts (d) : Δ \(\left\{{}\begin{matrix}x=-2+1t
\\y=3-4t\end{matrix}\right.\) (t∈R)
b) (d) đi qua 2 điểm A(1;-4) B(3;2)
Ta có \(\overrightarrow{AB}=\left(2;6\right)\)
=> (d) nhận \(\overrightarrow{AB}=\left(2;6\right)\) làm vtcp
=> (d) có vtpt \(\overrightarrow{n}=\left(-6;2\right)\)
(d) \(\left\{{}\begin{matrix}quaB\left(3;2\right)\\vtpt\overrightarrow{n}=\left(-6;2\right)\end{matrix}\right.\) => pt (d) : -6(x-3) + 2(y-2) hay -6x +2y+14 =0
c)(d) đi qua điểm A(3;-1) và có hệ số góc k=-2
y = k(x-x0) + y0 = -2( x-3) -1
=> y= -2x + 6 -1 => 2x + y +5 =0
viết phương trình tổng quát của đường thẳng Δ biết:
a) Δ đi qua M(-2;3) và có VTPT \(\overrightarrow{n}\)=(1;-4)
Δ \(\left\{{}\begin{matrix}quaM\left(-2;3\right)\\\overrightarrow{n}=\left(1;-4\right)\end{matrix}\right.\) => pt Δ : 1(x+2) -4 (y-3) hay x - 4y +14 =0
b) Δ đi qua M(2;4) và N (5;8)
Ta có \(\overrightarrow{MN}=\left(3;4\right)\)
=> Δ nhận \(\overrightarrow{MN}=\left(3;4\right)\) làm vtcp
=> Δ có vtpt : \(\overrightarrow{n}=\left(-4;3\right)\)
Δ \(\left\{{}\begin{matrix}quaM\left(2;4\right)\\\overrightarrow{n}=\left(-4;3\right)\end{matrix}\right.\) => pt Δ : -4(x-2) + 3(y-4) hay -4x + 3y - 12 = 0
c) giống câu c bài 1
a. phương trình tham số d có dạng : \(\left\{{}\begin{matrix}x=2+3t\\y=1+4t\end{matrix}\right.\)
b. phương trình tham số d có dạng: \(\left\{{}\begin{matrix}x=-2+5t\\y=3+t\end{matrix}\right.\)
a) Đường thẳng \(d\) đi qua điểm \(A( - 1;5)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {2;1} \right)\), nên có phương trình tham số là:
\(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 5 + t\end{array} \right.\)
Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow u = \left( {2;1} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n = \left( {1; - 2} \right)\) và đi qua \(A( - 1;5)\)
Ta có phương trình tổng quát là
\((x + 1) - 2(y - 5) = 0 \Leftrightarrow x - 2y + 11 = 0\)
b) Đường thẳng \(d\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3; - 2} \right)\) nên có vectơ chỉ phương \(\overrightarrow u = \left( {2;3} \right)\), và đi qua điểm \(B(4; - 2)\) nên ta có phương trình tham số của \(d\) là :
\(\left\{ \begin{array}{l}x = 4 + 2t\\y = - 2 + 3t\end{array} \right.\)
Đường thẳng \(d\) đi qua điểm \(B(4; - 2)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3; - 2} \right)\)
Phương trình tổng quát của đường thẳng d là:
\(3(x - 4) - 2(y + 2) = 0 \Leftrightarrow 3x - 2y - 16 = 0\)
c) Đường thẳng \(d\) có dạng \(y = ax + b\)
d đi qua \(P(1;1)\) và có hệ số góc \(k = - 2\) nên ta có:
\(1 = - 2.1 + b \Rightarrow b = 3\)
Suy ra đồ thị đường thẳng d có dạng \(y = - 2x + 3\)
Vậy đường thẳng d có phương trình tổng quát là \(y + 2x - 3 = 0\)
Suy ra đường thẳng d có vectơ pháp tuyến \(\overrightarrow n = \left( {2;1} \right)\), nên có vectơ chỉ phương là \(\overrightarrow u = \left( {1; - 2} \right)\) và đi qua điểm \(P(1;1)\) nên ta có phương trình tham số của d là :
\(\left\{ \begin{array}{l}x = 1 + t\\y = 1 - 2t\end{array} \right.\)
d) Đường thẳng \(d\) đi qua hai điểm \(Q(3;0)\)và \(R(0;2)\) nên có vectơ chỉ phương \(\overrightarrow u = \overrightarrow {QR} = ( - 3;2)\) và có vectơ pháp tuyến \(\overrightarrow n = (2;3)\)
Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 3 - 3t\\y = 2t\end{array} \right.\)
Phương trình tổng quát của \(\Delta \) là: \(2(x - 3) + 3(x - 0) = \Leftrightarrow 2x + 3y - 6 = 0\)
a) \(\left\{{}\begin{matrix}x=-5+4t\\y=-2-3t\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x=\sqrt{3}+2t\\y=1+3t\end{matrix}\right.\)
Do d \(\left\{{}\begin{matrix}điquaM\left(2;6\right)\\vtcp\overrightarrow{u}=\left(2;-3\right)\end{matrix}\right.\)
=> Pt tham số: \(\left\{{}\begin{matrix}x=2+2t\\y=6-3t\end{matrix}\right.\)
Ta có: \(\overrightarrow{u}=\left(\dfrac{1}{2};-5\right)\) ; \(\overrightarrow{v}=\left(k;-4\right)\)
Để hai vectơ \(\overrightarrow{u}\) và \(\overrightarrow{v}\) cùng phương
\(\Leftrightarrow\dfrac{k}{\dfrac{1}{2}}=\dfrac{4}{5}\Leftrightarrow k=\dfrac{2}{5}\)
\(\overrightarrow{u}=-3\overrightarrow{i}+4\overrightarrow{j}=-3\left(1;0\right)+4\left(0;1\right)=\left(-3;4\right)\)
=> Phương trình tham số của d:
\(\hept{\begin{cases}x=4-3t\\y=-3+4t\end{cases}}\)