K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

Xét dãy số : 1978, 19781978, ...., 19781978...1978 ( 2013 số 1978 ). Khi chia các số hạng của dãy này cho 2012 sẽ có hai phép chia có cùng số dư. Gỉa sử hai số hạng của dãy trong hai phép chia đó là a = 19781978.....1978 ( m số 1978 ) và b = 19781978.....1978 (n số 1978 )

( với \(1\le n< m\le2013\) )

=> Hiệu của a và b chia hết cho 2012 hay a - b = 19781978....1978 00...0 chia hết cho 12 => ( đpcm )

                                                                                 ( m - n số 1978 )    ( 4n chữ số 0 )

14 tháng 4 2018

Xét số M1=2001

           M2=20012001

           M3=200120012001

           ...

           M2003=200120012001...2001(có 2003 số 2001)

Đem 2003 số của dãy trên chia cho 2002

Thì có 2002 khả năng dư:0;1;2;3;...;2001

Theo nguyên lí ĐI-RÍC-LÊ tồn tại 2 số có cùng số dư

Khi ấy hiệu của chúng chia hết cho 2002

Gỉa sử 2 số đó là Mx và My   (0<y<x<2003)

Ta có : Mx-My=20012001...200100...0

Vậy luôn tồn tại 1 số có dạng 20012001...200100...0 và chia hết cho 2002

7 tháng 5 2018

- Tự hỏi tự trả lời

10 tháng 7 2018

xin lỗi mik ghi sai đề

xét 2000 số 1;11;111;1111;...;11111...1(2000 số 1).

trong 2000 số đó sẽ có 2 số chia 1999 có cùng số dư theo nguyên lý direchlet

gọi 2 số đó là 111...1(m chữ số ) và 11...1(n chữ số )

=>111...1(m chữ số )-11...1(n chữ số )=111...1000...0 chia hết cho 1999(m-n chữ số 1;n chữ số 0)

=>đpcm

29 tháng 5 2015

trả lời thế vẫn chưa đầy đủ đâu nguyen thieu cong thanh à.

12 tháng 6 2021

Bạn xem lại đề nhé, phải là chứng minh rằng có thể tìm được một số tự nhiên dạng 20152015...2015 chia hết cho 41

Chọn 41 số dạng 20152015...2015 khác nhau.

Nếu có 1 số trong nhóm chia hết cho 41. => đpcm

Nếu ko có số nào chia hết cho 41 thì theo nguyên lý Directle thì có ít nhất một cặp số (A;B) có cùng số dư khi chia cho 41.

Khi đó hiệu A - B = 20152015...201500...000 = 20152015...2015 (tạm gọi =C) x 1000...000 sẽ chia hết cho 41.

Mà 1000...000 không chia hết chết cho 41 nên C = 20152015...2015 sẽ chia hết cho 41. Nên C là số cần tìm.

Vậy, luôn tìm được ít nhất 1 số tự nhiên dạng 20152015...2015 chia hết cho 41.