Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét số M1=2001
M2=20012001
M3=200120012001
...
M2003=200120012001...2001(có 2003 số 2001)
Đem 2003 số của dãy trên chia cho 2002
Thì có 2002 khả năng dư:0;1;2;3;...;2001
Theo nguyên lí ĐI-RÍC-LÊ tồn tại 2 số có cùng số dư
Khi ấy hiệu của chúng chia hết cho 2002
Gỉa sử 2 số đó là Mx và My (0<y<x<2003)
Ta có : Mx-My=20012001...200100...0
Vậy luôn tồn tại 1 số có dạng 20012001...200100...0 và chia hết cho 2002
xét 2000 số 1;11;111;1111;...;11111...1(2000 số 1).
trong 2000 số đó sẽ có 2 số chia 1999 có cùng số dư theo nguyên lý direchlet
gọi 2 số đó là 111...1(m chữ số ) và 11...1(n chữ số )
=>111...1(m chữ số )-11...1(n chữ số )=111...1000...0 chia hết cho 1999(m-n chữ số 1;n chữ số 0)
=>đpcm
trả lời thế vẫn chưa đầy đủ đâu nguyen thieu cong thanh à.
Bạn xem lại đề nhé, phải là chứng minh rằng có thể tìm được một số tự nhiên dạng 20152015...2015 chia hết cho 41
Chọn 41 số dạng 20152015...2015 khác nhau.
Nếu có 1 số trong nhóm chia hết cho 41. => đpcm
Nếu ko có số nào chia hết cho 41 thì theo nguyên lý Directle thì có ít nhất một cặp số (A;B) có cùng số dư khi chia cho 41.
Khi đó hiệu A - B = 20152015...201500...000 = 20152015...2015 (tạm gọi =C) x 1000...000 sẽ chia hết cho 41.
Mà 1000...000 không chia hết chết cho 41 nên C = 20152015...2015 sẽ chia hết cho 41. Nên C là số cần tìm.
Vậy, luôn tìm được ít nhất 1 số tự nhiên dạng 20152015...2015 chia hết cho 41.
Xét dãy số : 1978, 19781978, ...., 19781978...1978 ( 2013 số 1978 ). Khi chia các số hạng của dãy này cho 2012 sẽ có hai phép chia có cùng số dư. Gỉa sử hai số hạng của dãy trong hai phép chia đó là a = 19781978.....1978 ( m số 1978 ) và b = 19781978.....1978 (n số 1978 )
( với \(1\le n< m\le2013\) )
=> Hiệu của a và b chia hết cho 2012 hay a - b = 19781978....1978 00...0 chia hết cho 12 => ( đpcm )
( m - n số 1978 ) ( 4n chữ số 0 )