Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
-vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3
-nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư
2.
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
do m ;m+k ; m+2k là số nguyên tố >3
=> m;m+k;m+2k lẻ
=> 2m+k chẵn =>k⋮⋮ 2
mặt khác m là số nguyên tố >3
=> m có dạng 3p+1 và 3p+2(p∈∈ N*)
xét m=3p+1
ta lại có k có dạng 3a ;3a+1;3a+2(a∈∈ N*)
với k=3a+1 ta có 3p+1+2(3a+1)=3(p+1+3a) loại vì m+2k là hợp số
với k=3a+2 => m+k= 3(p+a+1) loại
=> k=3a
tương tự với 3p+2
=> k=3a
=> k⋮⋮3
mà (3;2)=1
=> k⋮⋮6
Ta có P là số nguyên tố > 3 nên P là số lẻ (1)
Vì P > 3 nên P có 2 dạng:
+ Nếu P = 3n + 1(n thuộc N), ta có:
P + 1 = 3n + 1 + 2 = 3n + 3 là hợp số, loại.
+ Nếu P = 3n + 2(n thuộc N), ta có:
P + 1 = 3n + 2 + 2 = 3n + 4 là số nguyên tố, chọn.
Thay P = 3n + 2 vào P + 1, ta có:
3n + 2 + 1 = 3n + 3 = 3(n + 1)
Mà từ (1) => 3n + 2 là số lẻ.
=> 3n là số lẻ
=> n là số lẻ
=> n + 1 là số chẵn và chia hết cho 2.
Vì n + 1 chia hết cho 2 => 3(n + 1) chia hết cho 2.
Mà 3 chia hết cho 3 => 3(n + 1) chia hết cho 3.
=> 3(n + 1) chia hết cho 6 (ƯCLN(2; 3) = 1)
1, Ta có: p, p+1, p+2 là 3 số liên tiếp nên chắc chắn có 1 số chia hết cho 3 -> p+1 hoặc p+2 chia hết cho 3
p+2+6=p+8 là snt nên ko chia hết cho 3 nên p+1 chia hết cho 3 -> p+1+99 = p+100 chia hết cho 3 -> là hợp số
2, a, Nếu p có dạng 6k,6k+2,6k+3,6k+4 thì chia hết cho 2 hoặc 3
b, Do p là snt > 3 nên 8p ko chia hết cho 3. Trong 3 số liên tiếp 8p,8p+1,8p+2 có 8p và 8p+1 ko chia hết cho 3 nên 8p+2 chia hết cho 3.
Chia cho 2, do(2,3) = 1 nên 4p+1 chia hết cho 3 là hợp số
Gọi tích của 4 số tự nhiên là : T = x(x+1)(x+2)(x+3) (x>0, x thuộc N)
Vì x(x+1)(x+2) là tích của ba số tự nhiên liên tiếp nên T chia hết cho 3 (1)
Mặt khác : x(x+1) là tích hai số tự nhiên liên tiếp nên T chia hết cho 2 (2)
T là tích của 4 số tự nhiên liên tiếp nên T chia hết cho 4 (3)
Từ (1) , (2) , (3) ta suy ra : T chia hết cho : 3*2*6 = 24 .(dpcm)
Ba số tự nhiên liên tiếp là p ; p + 1 và p + 2
Vì p và p + 2 đều là số nguyên tố nên số ở giữa p + 1 phải chia hết cho 2 ( 1 )
Mà 3 số tự nhiên liên tiếp phải có 1 số chia hết cho 3. Vì 2 số kia là số nguyên tố
=> p + 1 chia hết cho 3 ( 2 ). Từ ( 1 ) ( 2 ) => p + 1 chia hết cho 2 và 3 <=> p + 1 chia hết cho 6
p là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+1⋮⋮2 (1)
p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.
Dạng 3k+1 không xảy ra.
Dạng 3k+2 cho ta p+1⋮3 (2).
Từ (1) và (2) cho ta p+1⋮6
Bài 1:
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ
vậy p + 1 và p - 1 là hai số chẵn.
Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.
đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)
A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1)
Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.
⇒ 4.k.(k + 1) ⋮ 8
⇒ A = (p + 1).(p - 1) ⋮ 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng:
p = 3k + 1; hoặc p = 3k + 2
Xét trường hợp p = 3k + 1 ta có:
p - 1 = 3k + 1 - 1 = 3k ⋮ 3
⇒ A = (p + 1).(p - 1) ⋮ 3 (2)
Từ (1) và (2) ta có:
A ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)
Xét trường hợp p = 3k + 2 ta có
p + 1 = 3k + 2 + 1 = 3k + 3 = 3.(k + 1) ⋮ 3 (3)
Từ (1) và (3) ta có:
A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)
Kết hợp (*) và(**) ta có
A \(⋮\) 24 (đpcm)
p là số nguyên tố lớn hơn 3 => p lẻ
p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2
+) Xét p = 3k + 1
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2 . ( 3m + 1 ) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố
Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố
=> d chia hết cho 3
+) Xét p = 3k + 2
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không phải số nguyên tố
Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số nguyên tố
=> d chia hết cho 3
Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
Vì p là số nguyên tố > 3 => P lẻ
=> Đặt p=2k+1
=> (p-1)(p+1)=(2k+1-1)(2k+1+1)
=2k(2k+2)
=4k(k+1)
Vì k(k+1) là tích 2 sô tự nhiên liên tiếp => chia hết cho 2
=> 4k(k+1) chia hết cho 8
=> (p-1)(p+1) chia hết cho 8 *
Vì: p>3 => p không chia hết cho 3
=> p:3 dư 1 hoặc 2
=> p có dạng là 3a+1 hoặc 3a+2
TH1: p=3a+1
=> (p-1)(p+1)=3a(3a+2)
=> Chia hết cho 3 (1)
TH2: p=3a+2
=> (p-1)(p+1)=(3a+1)(3a+3)
= 3(a+1)(3a+1)
=> Chia hết cho 3 (2)
(1) và (2) => (p-1)(p+1) chia hết cho 3 **
Từ * và ** => (p-1)(p+1) chia hết cho 24 do 3 và 8 nguyên tố cùng nhau
=> đpcm.
Có: (p-1); p; (p+1) là ba số tn liên tiếp nên có một số là bội của 3 mà p là snt lớn hơn 3 nên p không chia hết cho 3, suy ra p-1 hoặc p+1 chia hết cho 3 suy ra (p-1).(p+1) chia hết cho 3. Lại có p lẻ nên p-1 và p+1 là hai số chẵn lên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 4, suy ra (p-1).(p+1) chia hết cho 8. Từ đó ta được (p-1).(p+1) chia hết cho 24 (vì 3 và 8 nguyên tố cùng nhau.