K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

mk lm theo cách lớp 7 nhé:

Theo BĐT tgiac ta có:

a < b + c  =>  a2 < a(b + c)  => a2 < ab + ac

Tương tự ta có: b^2 < ab + bc

                          c2 < ac + bc

Cộng theo vế các BĐT trên ta được:

a2 + b2 + c2 < 2(ab + bc + ca)    (đpcm)

29 tháng 1 2016

đề bài hỏi gì bạn
 

Bài 1. Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Trên tia đối của tia AB lấy điểm E sao cho AE= AC.a)Chứng minh : BC = DE. b)Chứng minh : tam giác ABD vuông cân và BD // CE. c)Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CMtại K, đường thẳng này cắt BC tại N . Chứng minh : NM // AB. d)Chứng minh : AM = DE/2. Bài 2: Cho tam...
Đọc tiếp

i 1. Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD

=

AB. Trên tia đối của tia AB lấy điểm E sao cho AE

= AC.a)

Chứng minh : BC = DE.

 b)

Chứng minh : tam giác ABD vuông cân và BD // CE.

 c)

Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CMtại K, đường thẳng này cắt BC tại N . Chứng minh : NM // AB.

 d)

Chứng minh : AM = DE/2.

 

Bài 2:

 

Cho tam giác ABC vuông tại A; đường phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và HE. Chứng minh:

 a) AB = HB b) BE vuông góc KC 

c) Dựng M và N sao cho KC là đường trung trực của AM và BC là đường trung trực của AN. Chứngminh M, H, N thẳng hàng

 Câu 3.

cho tam giác ABC vuông ở C, = 60 độ, tia pg của góc BAC cắt BC ở E,kẻ EK vuông góc vớiAB ,kẻ BD vuông góc với tia AE (D thuộc tia AE) Ac cắt BD tại F

 c/m :a) AC=AKb) AK =KB

c) ba điểm F,E,K thằng hàng.

 

i 4. Cho tam giác ABC, M là trung điểm của BC. Kẻ đường cao AH. Trên tia đổi của tia MA lấyđiểm D sao cho MA=MD. Trên tia đối của tia HA lấy điểm E sao cho HE= HA.

 

a, CMR 2 tam giác AMB và DMC bằng nhau và AB//CD

 b, CMR BE=CD

c, Gọi I là giao điểm của BE và CD. CMR tam giác BIC cân tại I.

 

0
17 tháng 9 2019

ta có hình vẽ sau :

A B C M 7 1 24 40

a, tam giác ABC có AB2 + AC2 = 242 + 322 =1600 ;                                  

BC2 = 1600.

Vậy AB2 + AC2 = BC2.

=> tam giác ABC vuông góc tại A. 

b, áp dụng định lý Pi-ta-go vào tam giác vuông AMB, ta có :

BM2 = AB2 + AM2 = 242 + 72 = 625 => BM = \(\sqrt{625}=25\)

Mặt khác , MC = AC - AM = 32 - 7 = 25. Vậy MB = MC 

=> tam giác MBC cân tại M 

do đó \(\widehat{B_1}=\widehat{C}\)

 \(\widehat{AMB}=\widehat{B_1}+\widehat{C}\) ( tính chất góc ngoài của tam giác MCB ) hay

\(\widehat{AMB}=2\widehat{C}\)

                                                                                                                            

15 tháng 4 2020

Bài làm

Bài 2:

a) Xét tam giác AOI có:

Theo bất đẳng thức của tam giác có:

OA < IA + IO                           

=> OA < IA + BI - OB 

=> OA + OB < AI + IB (đpcm )

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.a) Tam giác ABC là tam giác gì?Vì sao?b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cânBài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cma) Tính độ dài các cạnh AB,ACb) Chứng minh góc B > góc CBài 3 : Cho góc xOy có...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.

a) Tam giác ABC là tam giác gì?Vì sao?

b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.

c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cân

Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cm

a) Tính độ dài các cạnh AB,AC

b) Chứng minh góc B > góc C

Bài 3 : Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.

a) Chứng minh tam giác AOM = tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB

b) Tam giác DMC là tam giác gì?Vì sao?

c) Chứng minh DM + AM < AC

Bài 4 : Cho tam giác ABC vuông tại C có góc A= 60 độ,phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc AB tại K (K thuộc A).Kẻ BD vuông góc AE tại D (D thuộc AE).Chứng minh

a) Tam giác ACE = tam giác AKE

b) AE là đường trung trực của đoạn thẳng CK

c) KA = KB

d) EB > EC

Bài 5 : Cho tam giác ABC vuông tại A,đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.

a) Chứng minh góc BAD = góc BDA

b) Chứng minh AD là tia phân giác của góc HAC

c) Vẽ DK vuông góc AC.Chứng minh AK = AH

d) Chứng minh AB + AC < BC + AH

Bài 6 : Cho tam giác ABC có AB = 6cm, AC = 8cm, BC= 10cm.Gọi K là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M. Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng :

a) Tam giác ABC vuông tại A 

b) AB = DC

c) Ba đường thẳng AB , MK ,CD cùng đi qua một điểm

Bài 7 : Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh huyền BC lấy điểm K sao cho CK = CA.Vẽ CM vuông góc AK tại M.Vẽ AD vuông góc BC tại D.AD cắt CM tại H.Chứng minh: 

a) Tam giác MCK = tam giác MCA 

b) HK // AB

c) HD < HA

6
29 tháng 4 2019

1
B A H C M D

a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A

b) Xét \(\Delta\)ABH và\(\Delta\)DBH:

                  BAH=BDH=90

                  BH chung

                  AB=DB

=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC

c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM

Suy ra \(\Delta\)AMC cân tại M

29 tháng 4 2019

2.

C B A H

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:

AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm

Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:

AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm

b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)

Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)