Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)
c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)
b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)
d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)
a) Ta có: 3√3=√32.3=√9.3=√2733=32.3=9.3=27
Vì √27>√1227>12 nên 3√3>√1233>12
Vậy 3√3>√1233>12.
b) Ta có: 3√5=√32.5=√4535=32.5=45
7=√72=√497=72=49
Vì √49>√4549>45 nên 7>3√57>35
Vậy 7>3√57>35.
c) Ta có: 13√51=√(13)2.51=√5191351=(13)2.51=519
15√150=√(15)2.150=√15025=√6=√6.99=√54915150=(15)2.150=15025=6=6.99=549
Vì √549>√519549>519 nên 13√51<15√1501351<15150
Vậy 13√51<15√1501351<15150.
d) Ta có: 12√6=√(12)2.6=√64126=(12)2.6=64
=√32=√3.12=√3.√12=32=3.12=3.12
Vì √3.√12<6√123.12<612 nên 12.√6<6√1212.6<612
Vậy 12√6<6√12126<612.
a) Ta có:
4>3⇔√4>√3⇔2>√3⇔2.2>2.√3⇔4>2√34>3⇔4>3⇔2>3⇔2.2>2.3⇔4>23
Cách khác:
Ta có:
⎧⎨⎩42=16(2√3)2=22.(√3)2=4.3=12{42=16(23)2=22.(3)2=4.3=12
Vì 16>12⇔√16>√1216>12⇔16>12
Hay 4>2√34>23.
b) Vì 5>4⇔√5>√45>4⇔5>4
⇔√5>2⇔5>2
⇔−√5<−2⇔−5<−2 (Nhân cả hai vế bất phương trình trên với −1−1)
Vậy −√5<−2−5<−2.
a, Ta có : \(4=\sqrt{16}\); \(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)
Do 12 < 16 hay \(2\sqrt{3}< 4\)
b, Ta có : \(-2=-\sqrt{4}\)
Do \(4< 5\Rightarrow\sqrt{4}< \sqrt{5}\Rightarrow-\sqrt{4}>-\sqrt{5}\)
Vậy \(-2>-\sqrt{5}\)
a) 2 \sqrt{6}, \sqrt{29}, 4 \sqrt{2}, 3 \sqrt{5} ;26,29,42,35;
b) \sqrt{38}, 2 \sqrt{14}, 3 \sqrt{7}, 6 \sqrt{2}38,214,37,62
a) \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b) \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)
Trả lời:
a) ta có: 2 = √4
Vì 4 > 3 nên √4 > √3
Vậy 2 > √3
b) Ta có: 6 = √36
Vì 36 < 41 nên √36 < √41
Vậy 6 < √41
c) ta có 7 = √49
Vì 49 > 47 nên √49 > √47
Vậy 7 > √47
+ Ta có:
2√6−√5=2(√6+√5)(√6−√5)(√6+√5)26−5=2(6+5)(6−5)(6+5)
=2(√6+√5)(√6)2−(√5)2=2(√6+√5)6−5=2(6+5)(6)2−(5)2=2(6+5)6−5
=2(√6+√5)1=2(√6+√5)=2(6+5)1=2(6+5).
+ Ta có:
3√10+√7=3(√10−√7)(√10+√7)(√10−√7)310+7=3(10−7)(10+7)(10−7)
=3(√10−√7)(√10)2−(√7)2=3(10−7)(10)2−(7)2=3(√10−√7)10−7=3(10−7)10−7
=3(√10−√7)3=√10−√7=3(10−7)3=10−7.
+ Ta có:
1√x−√y=1.(√x+√y)(√x−√y)(√x+√y)1x−y=1.(x+y)(x−y)(x+y)
=√x+√y(√x)2−(√y)2=√x+√yx−y=x+y(x)2−(y)2=x+yx−y
+ Ta có:
2ab√a−√b=2ab(√a+√b)(√a−√b)(√a+√b)2aba−b=2ab(a+b)(a−b)(a+b)
=2ab(√a+√b)(√a)2−(√b)2=2ab(√a+√b)a−b=2ab(a+b)(a)2−(b)2=2ab(a+b)a−b.
\(\frac{2}{\sqrt{6}-\sqrt{5}}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
\(\frac{3}{\sqrt{10}+\sqrt{7}}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}-\sqrt{7}\right)\left(\sqrt{10}+\sqrt{7}\right)}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\sqrt{10}-\sqrt{7}\)
\(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)
a) Ta có:
+)√25+9=√34+)25+9=34.
+)√25+√9=√52+√32=5+3+)25+9=52+32=5+3
=8=√82=√64=8=82=64.
Vì 34<6434<64 nên √34<√6434<64
Vậy √25+9<√25+√925+9<25+9
b) Với a>0,b>0a>0,b>0, ta có
+)(√a+b)2=a+b+)(a+b)2=a+b.
+)(√a+√b)2=(√a)2+2√a.√b+(√b)2+)(a+b)2=(a)2+2a.b+(b)2
=a+2√ab+b=a+2ab+b
=(a+b)+2√ab=(a+b)+2ab.
Vì a>0, b>0a>0, b>0 nên √ab>0⇔2√ab>0ab>0⇔2ab>0
⇔(a+b)+2√ab>a+b⇔(a+b)+2ab>a+b
⇔(√a+√b)2>(√a+b)2⇔(a+b)2>(a+b)2
⇔√a+√b>√a+b⇔a+b>a+b (đpcm)
a, Ta có : \(\sqrt{25+9}=\sqrt{34}\)
\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)
mà 34 < 64 hay \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
bình phương 2 vế ta được : \(a+b< a+2\sqrt{ab}+b\)
\(\Leftrightarrow2\sqrt{ab}>0\)vì \(a;b>0\)nên đẳng thức này luôn đúng )
Vậy ta có đpcm
Ta có:
+ 3√512=3√83=8;5123=833=8;
+ 3√−729=3√(−9)3=−9;−7293=(−9)33=−9;
+ 3√0,064=3√0,43=0,4;0,0643=0,433=0,4;
+ 3√−0,216=3√(−0,6)3=−0,6;−0,2163=(−0,6)33=−0,6;
+ 3√−0,008=3√(−0,2)3=−0,2.
Đáp án:
( lần lượt như trên nhé!!! Ko viết lại đề)
8 ; - 9 ; 0,4 ; - 0,6 ; - 0,2
a, \(\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\)
Với \(x\ge\frac{1}{2}\)pt có dạng : \(2x-1=3\Leftrightarrow x=2\)( tm )
Với \(x< \frac{1}{2}\)pt có dạng : \(-2x+1=3\Leftrightarrow x=-1\)( tm )
Vậy tập nghiệm của pt là S = { -1 ; 2 }
b, \(\frac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\)ĐK : \(x\ge0\)
\(\Leftrightarrow\frac{2}{3}\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\Leftrightarrow\frac{1}{3}\sqrt{15x}=2\)
\(\Leftrightarrow\sqrt{15x}=6\)bình phương 2 vế : \(\Leftrightarrow15x=36\Leftrightarrow x=\frac{36}{15}=\frac{12}{5}\)( tm )
Vậy tập nghiệm của pt là S = { 12/5 }
a) a) Biến đổi vế trái thành 32√6+23√6−42√6326+236−426 và làm tiếp.
b) Biến đổi vế trái thành (√6x+13√6x+√6x):√6x(6x+136x+6x):6x và làm tiếp
a) Ta có: 5=3√53=3√1255=533=1253
Vì 125>123⇔3√125>3√123125>123⇔1253>1233
⇔5>3√123⇔5>1233
Vậy 5>3√1235>1233.
b, Ta có :
+)53√6=3√53.6=3√125.6=3√750+)63√5=3√63.5=3√216.5=3√1080+)563=53.63=125.63=7503+)653=63.53=216.53=10803
Vì 750<1080⇔3√750<3√1080750<1080⇔7503<10803
⇔53√6<63√5⇔563<653.
Vậy 53√6<63√5563<653.