Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hàm số nghịch biến trên R vì 1 - \(\sqrt{ }\)5 < 0.
b) Khi x = 1 + \(\sqrt{ }\)5 thì y = -5.
c) Khi y = \(\sqrt{ }\)5 thì x = \(\dfrac{-3+\sqrt{5}}{2}\)
Bài giải:
a) Hàm số nghịch biến trên R vì 1 - √5 < 0.
b) Khi x = 1 + √5 thì y = -5.
c) Khi y = √5 thì x = -3+√523+52.
a) Ta có a = 1- √5 < 0 nên hàm số đã cho nghịch biến trên R.
b) Khi x = 1 + √5 ta có:
y = (1 - √5).(1 + √5) - 1 = (1 - 5) - 1 = -5
c) Khi y = √5 ta có:
√5 = (1 - √5)x - 1
=> √5 + 1 = (1 - √5)x
(hoặc trục căn thức ở mẫu như dưới đây:
a, Vì \(1-\sqrt{5}< 0\)nên hàm nghịch biến
b, \(x=1+\sqrt{5}x\)
\(\Leftrightarrow x-x\sqrt{5}=1\)
\(\Leftrightarrow x\left(1-\sqrt{5}\right)=1\)
\(\Leftrightarrow x=\frac{1}{1-\sqrt{5}}\)
Khi đó \(y=\left(1-\sqrt{5}\right).\frac{1}{1-\sqrt{5}}-1=1-1=0\)
b, \(y=-\sqrt{5}\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)x-1=-\sqrt{5}\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)x=1-\sqrt{5}\)
<=> x = 1
a, Vì \(5-3\sqrt{2}>0\) nên hs đồng biến trên R
b, \(x=5+3\sqrt{2}\Leftrightarrow y=25-18+\sqrt{2}-1=6+\sqrt{2}\)
c, \(y=0\Leftrightarrow\left(5-3\sqrt{2}\right)x+\sqrt{2}-1=0\Leftrightarrow x=\dfrac{1-\sqrt{2}}{5-3\sqrt{2}}\)
\(\Leftrightarrow x=\dfrac{\left(1-\sqrt{2}\right)\left(5+3\sqrt{2}\right)}{7}=\dfrac{-2\sqrt{2}-1}{7}\)
B1a) m khác 5, khác -2
b) m khác 3, m < 3
B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến
b) h số trên là nghịch biến vì 2x > căn 3x
c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến
a)
Ta thấy \(\sqrt{3}-2< 0\) nên hàm số trên nghịch biến trên R
b)
\(\sqrt{3}-7=\left(\sqrt{3}-2\right)x+5\)
\(\Leftrightarrow\sqrt{3}-12=\left(\sqrt{3}-2\right)x\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}-12}{\sqrt{3}-2}\)
Cho hàm số y=(1-√5)x-1
a, Hàm số đồng biến hay nghịch biến trên R?vì sao
Hàm số nghịch biến vi (1-√5<0
b,Tính y khi x=1+√5
y=(1-√5)(1+√5)-1
y = -5
a, hàm số bậc nhất y = (m-2)x +3 đồng biến <=> m-2 > 0
<=> m >2
b,hàm số bậc nhất y =(m-2)x +3 nghịch biến <=> m - 2 <0
<=> m < 2
a, Để hàm số trên đồng biến khi
\(m-2>0\Leftrightarrow m>2\)
b, Để hàm số trên nghịch biến khi
\(m-2< 0\Leftrightarrow m< 2\)
Để hàm số là hàm số bậc nhất thì hệ số \(a\ne0\)
a) Cm : \(\sqrt{3-m}\ne0\Rightarrow m\ne3\)
b) \(\frac{m-5}{m+2}\ne0\Rightarrow m\ne5\)
Bài 2 :
Để hàm số đồng biến thì hệ số \(a>0\)
Để hàm số nghịch biến thì hệ số \(a< 0\)
Gợi ý z tư làm nha
a) Do 1−√5<01−5<0 nên hàm số y=(1−√5)x−1y=(1−5)x−1 nghịch biến trên RR.
b) Khi x=1+√5x=1+5, ta có
y=(1−√5)(1+√5)−1=(1−5)−1=−5y=(1−5)(1+5)−1=(1−5)−1=−5.
c) Khi y=√5y=5, ta có
(1−√5)x−1=√5(1−5)x−1=5
⇔(1−√5)x=1+√5⇔(1−5)x=1+5
⇔x=1+√51−√5⇔x=1+51−5
⇔x=−3+√52⇔x=−3+52.
a, Vì \(1-\sqrt{5}< 0\)do \(1< \sqrt{5}\)
b, Thay \(x=1+\sqrt{5}\)vào hàm số trên ta được
\(\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)-1=y\)
\(\Leftrightarrow y=1-5-1=-5\)
Vậy với \(x=1+\sqrt{5}\)thì y = -5
c, Thay y = \(\sqrt{5}\)vào hàm số trên ta được
\(\sqrt{5}=\left(1-\sqrt{5}\right)x-1\)
\(\Leftrightarrow\sqrt{5}+1=\left(1-\sqrt{5}\right)x\Leftrightarrow x=\frac{\sqrt{5}+1}{1-\sqrt{5}}=-\frac{5+2\sqrt{5}+1}{4}\)
\(=-\frac{2\left(3+\sqrt{5}\right)}{4}=-\frac{3+\sqrt{5}}{2}\)