K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2015

a)      nối A với C ,  B với D được:

EF // AC ( đường trung bình của tam giác BAC)

HG // AC ( "         "          "          "        "          "       ) suy ra EF // AC  do cùng // AC

HE // DB ( đường trung bình tam giác ADB  )

FG // DB ( "     "           "         "         "         "        ) suy ra HE // FG  do cùng // với DB

Xét tứ giác EFGH có 2 cặp cạnh đối song song  nên EFGH là hình bình hành

b)  EFGH là hình ....

Thoi , suy ra EH = GH  nên AC=BD  ( do là đường trung bình của hai tam giác ADB,ADC)

vì AC = BD nên ABCD là hình thang cân

Chữ nhật, suy ra HE vuông góc với HG  nên AC vuông góc với  BD

Hình vuông   ,   kết hợp 2 yếu tố của 2 hình trên được AC=BD và AC vuông góc với BD.

Tích nha☺

 

30 tháng 10 2020

giúp em với


A


BCDFEOa, Vì tứ giác ABCD là hình hình hành

⇒ ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪AD // BCAD = BC AB = CDAB // CD{AD // BCAD = BC AB = CDAB // CD

Vì AD // BC

⇒ AD // BE

Vì {AD = BCBE= BC{AD = BCBE= BC

⇒ AD = BE

Tứ giác EADB có

{AD // BEAD = BE{AD // BEAD = BE

⇒ Tứ giác EADB là hình bình hành (đpcm)

b, Vì tứ giác EADB là hình bình hành

⇒ AE // BD (1)

Vì {AB = CDDF = CD{AB = CDDF = CD

⇒ AB = DF

Vì AB // CD

⇒ AB // DF

Tứ giác ABDF có

{AB = DFAB // DF{AB = DFAB // DF

⇒ Tứ giác ABDF là hình bình hành

⇒ AF // BD (2)

Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)

c, Vì tứ giác EADB là hình bình hành

⇒ AE = BD (3)

Vì tứ giác ABDF là hình bình hành

⇒ AF = BD (4)

Từ (3), (4) ⇒ AE = AF

Vì {AE = AFE, A, F thẳng hàng {AE = AFE, A, F thẳng hàng 

⇒ A là trung điểm của EF

⇒ CA là đường trung tuyến của ΔCEF

Vì DC = DF

⇒ D là trung điểm của EF

⇒ ED là đường trung tuyến của ΔCEF

Vì BE = BC

⇒ B là trung điểm của EC

⇒ FB là đường trung tuyến của ΔCEF

Như vậy

⎧⎩⎨⎪⎪CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF

⇒ CA, ED, FB đồng quy (tại trọng tâm của ΔCEF) (đpcm)

 học tốt ;-;

17 tháng 10 2019

cảm ơn ạ

19 tháng 9 2019

A B C D E F M N I

Ta có AECF là hình bình hành=> EF cắt AC ở trung điểm I của mỗi đường

AMCN là hình bình hành=>MN cắt AC ở trung điểm của mỗi đường

=>EF cắt MN ở trung điểm mỗi đường=> ĐPCM

18 tháng 11 2019

Tự vẽ hình 

a) Ta có: AB = CD  (cạnh hình thoi)

BE = DG (g.t)

=> AB + BE = CD + DG hay AE = CG (cmt)

Xét tam giác AHE  và tam giác CFG ta có:

AE=CG

HAE  = FCG (cùng bù vs BAD = DCB)

AH=CF (gt)

Do đó tam giác AHE = tam giác CFG (c.g.c) => HE = FG 

Do đó EFGH là cạnh bình hành (đpcm)

b) Nối E vs G 

Xét tam giác OBE và tam giác ODG ta có:

BE= DG (gt)

OBE = ODG (so le trong)

OB = OD ( tính chất đường chéo của hình thoi ABCD)

=> tam giác OBE = tam giác ODG (c.g.c) => OBE = ODG 

Mà DOG + GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.

Chứng minh tương tự ta có H, O, F thẳng hàng.

Vậy O là tâm đối xứng của hình bình hành EFGH.

c) Hình bình hành EFGH là hình thoi ⇔ HE = EF

\(\Leftrightarrow\Delta HAE=\Delta EBF\left(c.c.c\right)\)

\(\Leftrightarrow\widehat{HAE}=\widehat{EBF}=\widehat{EDA}\left(đv\right)\)

\(\Leftrightarrow\widehat{HAE}=\widehat{EAD}\) mà \(\widehat{HAE}+\widehat{EAD=180^O\left(kb\right)}\)

\(\Leftrightarrow\widehat{HAE}=\widehat{EAD}=90^O\)

⇔ Hình thoi ABCD có 1 góc vuông

⇔ ABCD là hình vuông.

Vậy hình thoi ABCD phải là hình vuông thì hình bình hành EFGH trở thành hình thoi.

16 tháng 12 2020

a) Ta có AB = CD (cạnh hình thoi)

BE = DG (gt)

⇒ AB + BE = CD + DG hay AE = CG (cmt)

Xét ΔAHE và ΔCFG có:

AE = CG

∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),

AH = CF (gt)

Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG

Chứng minh tương tự ta có HG = EF

Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).

b) Nối E và G.

Xét ΔOBE và ΔODG có

BE = DG (gt),

∠OBE = ∠ODG (so le trong),

OB = OD ( tính chất đường chéo của hình thoi ABCD)

⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG

Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.

Chứng minh tương tự ta có H, O, F thẳng hàng.

Vậy O là tâm đối xứng của hình bình hành EFGH.

c) Hình bình hành EFGH là hình thoi ⇔ HE = EF

⇔ Hình thoi ABCD có 1 góc vuông

⇔ ABCD là hình vuông.

Vậy hình thoi ABCD phải là hình vuông thì hình bình hành EFGH trở thành hình thoi.