Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Học sinh vẽ hình chữ nhật ABCD
Trên cạnh AD lấy điểm M sao cho: AM = 4 : 2 = 2 (cm)
Trên cạnh BC lấy điểm N sao cho: BN = 2cm
M và N là trung điểm của AD và BC
- Các hình chữ nhật có ở hình bên là: ABNM, MNCD, ABCD
- Các cạnh song song với cạnh AB là: MN, DC
a) Học sinh vẽ hình chữ nhật ABCD
b) Trên cạnh AD lấy điểm M sao cho: AM = 4 : 2 = 2 (cm)
Trên cạnh BC lấy điểm N sao cho: BN = 2cm
M và N là trung điểm của AD và BC
- Các hình chữ nhật có ở hình bên là: ABNM, MNCD, ABCD
- Các cạnh song song với cạnh AB là: MN, DC
a) Vẽ hình chữ nhật ABCD có chiều dài 5cm, chiều rộng 4cm .
Nối trung điểm M của AD với trung điểm N của cạnh BC ta được các hình tứ giác đều là hình chữ nhật.
b) – Các hình chữ nhật có trong hình bên là:
Hình chữ nhật ABCD, ABNM, MNCD.
- Các cạnh song song với cạnh AB là:
Các cạnh MN và DC.
a) Sai vì tứ giác ABCD có 2 góc vuông, 1 góc nhọn và 1 góc tù
b) Đúng
c) Đúng
d) Sai vì cạnh AD không song song với cạnh BC
diện tích hình CN là 60 xăng ti mét vuông diện tích hình bình hành là 30 xăng ti mét vuông và gấp 2 lần
a) Hai đoạn thẳng AN và MC song song và bằng nhau vì chúng là hai cạnh đối diện của hình bình hành AMCN.
b) Diện tích hình chữ nhật ABCD là:
12 × 5 = 60 ( c m 2 )
Vì N là trung điểm của DC nên NC dài :
12 ∶ 6 = 6 cm
Diện tích hình bình hành AMCN là :
6 × 5 = 30( c m 2 )
So với diện tích hình bình hành AMCN thì diện tích hình chữ nhật ABCD gấp: 60 : 20 = 2 lần
Nói thêm : Có thể giải câu b gấp đôi đồ dài đáy hình bình hành.
Chiều rộng hình chữ nhật ABCD gắp đôi bộ dài đáy hình bình hành.
Chiều rộng hình chữ nhật ABCD bằng chiều cao hình bình hành.
Vậy diện tích hình chữ nhật gập đôi diện tích hình bình hành.
Cách 3 :
Đường gấp khúc AMNC chia hình chữ nhật ABCD thành 4 tam giác (vuông) bằng nhau. Hình bình hành AMNC gồm 2 tam giác ấy. Vậy diện tích hình chữ nhật ABCD gấp đôi diện tích hình bình hành AMCN.
em vẽ một hình chữ nhật ABCD có chiều dài AB bằng 7cm chiều rộng BC bằng 4cm và cho biết cạnh AB song song với cạnh DC; cạnh AB vuông góc với cạnh: BC và AD