Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
a, Xét ΔABH và ΔAHD có
Góc A chung
Góc ADH=Góc AHB=90°
=> ΔABH ~ΔAHD(g.g)
=> AH/AB=AD/AH
=> AB.AD=AH²(1)
Xét ΔAEH và ΔAHC có:
Góc A chung
Góc AEH = góc AHC
=>ΔAEH~ΔAHC(g.g)
=> AE/AH=AH/AC
=>AE.AC=AH²(2)
Từ (1);(2) => AD.AB=AE.AC(đpcm)
b, vì ΔABC vuông tại A có AI là trung tuyến ứng với cạnh huyền=> BI=IC=AI
=> ΔAIC cân tại I
=>góc IAC =góc ICA
Ta cũng có ΔBIA cân tại I =>góc IBA=góc BAI
Mà góc BAI =góc AED(cùng phụ)
=> góc IBA=góc AED
Mà ABI+góc ACI= 90°
=> gócAED + góc IAC=90°
=> DEvuông góc vs AI
c,
mình làm câu c,d nek bạn
c, ta có\(\Delta\)HEC vuông tại E( vì E là hình chiếu của H nên Góc E=90 độ)
=> EN là đường trung tuyến ứng vs cạnh huyền
=> EN=NH=NC( vì N là trung điểm của HC)
=> \(\Delta\)ENC cân tại N(NE=NC cmt)
=> góc NEC=góc NCE(hai góc đáy) (1)
chứng minh tương tự trong \(\Delta\)BMD cân tại M
=> góc DBM=góc MDB(2)
ta có \(\Delta\)ABC vuông tại A nên góc DBM+góc NCE=90 độ
=>góc MDB+ góc NEC(vì (1);(2)) (3)
và \(\Delta\)\(\Delta\)
DAE vuông tại A nên góc ADE+góc AED=90 độ (4)
từ (3);(4)=>góc BDM+góc ADE=90 độ
=> góc MDH+góc HDE=90 độ ( 180 độ - (MDH+HDE))
=> DM\(\perp\) DE (*)
và góc DEA+ góc NEC=90 độ
=> góc HDE+góc HEN= 90 độ
=> DE\(\perp\) EN (**)
từ (*); (**)=> MDEN là hình thang (DM // EN vì cùng \(\perp\)vs DE)
d, Ta có DHEA là hình chữ nhật (góc D= góc H =Góc E=90 độ)
=> OH=OA=OD=OE (t/c đường chéo hcn)
=> OH=OA=HA/2
ta có HM+HN=BM+NC(vì BM=MH; NH=NC)
=> MH+HN=BC/2=>MN=1/2 BC
diện tích \(\Delta\)ABC =1/2. AH. BC
diện tích \(\Delta\)MON=1/2.OH.MN=1/2.1/2AH.1/2BC
Vậy (S\(\Delta\) MON)/(S\(\Delta\)ABC)=(1/2.AH.BC)/(1/8 AH.BC)
=4
Mình nghĩ là làm như vậy, có gì bạn góp ý nha
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=25^2-15^2=400\)
=>AC=20(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot25=15\cdot20=300\)
=>AH=12(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{15^2}{25}=9\left(cm\right)\\CH=\dfrac{20^2}{25}=16\left(cm\right)\end{matrix}\right.\)
b: I là trung điểm của AH
=>IA=IH=12/2=6cm
Xét ΔCBK có HI//BK
nên \(\dfrac{HI}{BK}=\dfrac{CH}{CB}\)
=>\(\dfrac{6}{BK}=\dfrac{16}{25}\)
=>\(BK=6\cdot\dfrac{25}{16}=9,375\left(cm\right)\)
a) Nối \(A,M.\) Vì \(AH\perp BC,MD\perp AC\to A,H,M,D\) cùng nằm trên đường tròn đường kính \(AM\). Suy ra \(\angle MDH=\angle MAH\) (hai góc nội tiếp cùng chắn một cung). Do \(B,M\) đối xứng nhau qua điểm \(H\) nên
\(\angle MAH=\angle BAH\to\angle MAH=\angle ACB\to\angle MDH=\angle ACB.\)
Do \(O\) là trung điểm \(MC\), nên áp dụng tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông \(MCD\), ta được \(\Delta OCD\) cân, suy ra \(\angle ODC=\angle OCD\to\angle ODC=\angle MDH.\) Mà \(\angle ODC+\angle ODM=90^{\circ}\to\angle ODH=90^{\circ}.\) Vậy tam giác \(HDO\) vuông ở \(D.\)
b) Kẻ đường cao \(DK\) của tam giác \(HDO,K\in BC.\) Ta có \(OH=OM+HM=\frac{1}{2}BM+\frac{1}{2}CM=\frac{1}{2}BC.\) Do đó diện tích tam giác \(HDO\) lớn nhất khi và chỉ khi \(DK\) lớn nhất. Gọi \(J\) là trung điểm của \(OH\to DK\le DJ=\frac{1}{2}OH=\frac{1}{4}BC.\) Vậy \(DK\) lớn nhất khi \(K\equiv J\Leftrightarrow\Delta HDO\) vuông cân ở \(D.\) Khi đó \(\angle MAC=45^{\circ}\) (Vì bằng \(\angle DHC,\) góc nội tiếp cùng chắn 1 cung). Suy ra
\(\angle BAM=45^{\circ}\to\angle ABC=67,5^{\circ}\to\angle ACB=22,5^{\circ}.\)
Lấy \(I\) là trung điểm \(BC\to AI=\frac{1}{2}BC=a,\angle AIB=2\angle ACB=45^{\circ}.\) Suy ra \(AH=AI\cdot\sin\angle AIB=a\cdot\sin45^{\circ}=\frac{a\sqrt{2}}{2}.\)
Vậy để diện tích \(HDO\) lớn nhất thì \(AH=\frac{a\sqrt{2}}{2}.\)
a: Ta có: H và M đối xứng nhau qua AB
nên AB là đường trung trực của HM
Suy ra: AB\(\perp\)HM và E là trung điểm của HM
Ta có: H và N đối xứng nhau qua AC
nên AC là đường trung trực của HN
Suy ra: AC\(\perp\)HN tại F và F là trung điểm của NH
Xét tứ giác AEHF có
\(\widehat{FAE}=\widehat{AEH}=\widehat{AFH}=90^0\)
Do đó: AEHF là hình chữ nhật