K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay \(y=\dfrac{1}{3}\) vào (d3), ta được:

\(\dfrac{-2}{3}x+\dfrac{5}{3}=\dfrac{1}{3}\)

\(\Leftrightarrow x=2\)

Thay x=2 và \(y=\dfrac{1}{3}\) vào (d), ta được:

\(2\left(m-2\right)+m+7=\dfrac{1}{3}\)

\(\Leftrightarrow3m=\dfrac{1}{3}-3=\dfrac{-8}{3}\)

hay \(m=-\dfrac{8}{9}\)

NV
19 tháng 9 2021

d vuông góc với \(d_4\) khi:

\(\left(m-2\right).\left(-\dfrac{1}{6}\right)\left(m+3\right)=-1\)

\(\Leftrightarrow m^2+m-12=0\)

\(\Rightarrow\left[{}\begin{matrix}m=3\\m=-4\end{matrix}\right.\)

19 tháng 9 2021

Em vừa đăng thêm 1 câu hỏi ý ạ,thầy/cô giúp em được không ạ ? Em cám ơn thầy/cô ạ

30 tháng 5 2017

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

30 tháng 5 2017

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

1 cho biểu thức a rút gọn P P=\(\)( \(2-\dfrac{2\sqrt{x}}{\sqrt{x-3}}+\dfrac{5\left(\sqrt{x+4}\right)}{x-9} \)) :( 1-\(\dfrac{5}{\sqrt{x+3}}\)) b tìm x để P<-\(\dfrac{1}{2}\) c tìm MaxQ= P(x\(\sqrt{x}-8x+15\sqrt{x}\)) 2 cho biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x+}3}-\dfrac{5}{x+\sqrt{x-}6}+\dfrac{1}{2-\sqrt{x}}\) a rútA b tìm x để \(\sqrt{A}\)<A c tìm x thuộc Z để A thuộc Z 3 cho d y=( a-1) x+1 a xác định hệ số a để ( d) đi A (2;5) b xác...
Đọc tiếp

1 cho biểu thức

a rút gọn P

P=\(\)( \(2-\dfrac{2\sqrt{x}}{\sqrt{x-3}}+\dfrac{5\left(\sqrt{x+4}\right)}{x-9} \)) :( 1-\(\dfrac{5}{\sqrt{x+3}}\))

b tìm x để P<-\(\dfrac{1}{2}\)

c tìm MaxQ= P(x\(\sqrt{x}-8x+15\sqrt{x}\))

2 cho biểu thức

A=\(\dfrac{\sqrt{x}+2}{\sqrt{x+}3}-\dfrac{5}{x+\sqrt{x-}6}+\dfrac{1}{2-\sqrt{x}}\)

a rútA

b tìm x để \(\sqrt{A}\)<A

c tìm x thuộc Z để A thuộc Z

3 cho d y=( a-1) x+1

a xác định hệ số a để ( d) đi A (2;5)

b xác định a để (d) cắt trục hoành tại điểm có hoành độ là-2

c vẽ đồ thị tìm được ở câu a,b trên cùng 1 tọa độ tìm giao điểm của B tại đường thẳng này

d tính diện tích tam giác có đỉnh là góc B và 2 đỉnh còm lại giao điểm của 2 đồ thị với trục hoành

4 giải hệ phương trình

a \(\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{1}{Y+1}=7\\\\\dfrac{5}{x-1}-\dfrac{2}{y+1}=4\\\end{matrix}\right.\)

b \(\dfrac{3}{\sqrt{x-1}-1}+\dfrac{1}{\sqrt{y+1}-x}=1\)

\(\dfrac{-1}{\sqrt{x+1}-1}-\dfrac{2}{\sqrt{y+1}-2}=3\)

c \(\left\{{}\begin{matrix}\dfrac{x-\dfrac{x-1}{2}+y+3}{2}\\\\3x-2y=4\\\end{matrix}\right.\)

giúp mình giải bài này với ạ mình đang cần gấp lắm ạ

3
31 tháng 1 2019

Bạn đăng mỗi lần 1 câu thôi nhé!

1 tháng 2 2019

giúp mình giải bài này với ạ mình đang cần gấp lắm ạkhocroi

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Lời giải:

1)

Ý 1: ĐTHS (d) song song với đường thẳng $y=2x-3$ nên \(a=2\)

Mặt khác (d) đi qua \(A(-3;\frac{1}{2})\Rightarrow \frac{1}{2}=a.(-3)+b=2(-3)+b\)

\(\Leftrightarrow b=\frac{13}{2}\)

PTĐT cần tìm: \(y=2x+\frac{13}{2}\)

Ý 2: (d): $y=ax+b$ song song với đường thẳng \(y=-x+4\)

\(\Rightarrow a=-1\)

Mặt khác (d) đi qua điểm (-3;1) nên:

\(1=a(-3)+b=(-1)(-3)+b\)

\(\Leftrightarrow b=-2\)

PTĐT cần tìm: \(y=-x-2\)

Ý 3: Vì đường thẳng (d) cần tìm song song với đường thẳng \(y=2x-3\Rightarrow a=2\)

Mặt khác (d) đi qua điểm \((\frac{1}{3}; \frac{4}{3})\) nên:

\(\frac{4}{3}=\frac{1}{3}a+b=\frac{1}{3}.2+b\Leftrightarrow b=\frac{2}{3}\)

Vậy PTĐT cần tìm là \(y=2x+\frac{2}{3}\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

2)

Gọi E là giao điểm của $(d_1), (d_2)$

Khi đó:

\(y_E=-x_E+6=3x_E-6\)

\(\Leftrightarrow x_E=3\Rightarrow y_E=3\)

Như vậy điểm E có tọa độ \((3;3)\)

Để 3 đường thẳng $(d_1),(d_2),(d_3)$ đồng quy thì \(E\in (d_3)\)

\(\Leftrightarrow 3=3m+m-5\Leftrightarrow 4m=8\Leftrightarrow m=2\)

Vậy m=2

a: d//d1

=>m-2=-m và m+7<>2m-3

=>m=1

b: d trùng với d2

=>m-2=-m^2 và m+7=-2m+1

=>m=-2 và m^2+m-2=0

=>m=-2

d: d vuông góc d4

=>-1/6(m+3)(m-2)=-1

=>(m+3)(m-2)=6

=>m^2+m-6-6=0

=>m^2+m-12=0

=>m=-4 hoặc m=3

c: Thay y=1/3 vào d3, ta được:

-2/3x+5/3=1/3

=>-2/3x=-4/3

=>x=2

Thay x=2 và y=1/3 vào (d), ta được:

2(m-2)+m+7=1/3

=>3m+3=1/3

=>3m=-8/3

=>m=-8/9

15 tháng 11 2017

(d3)//(d4)\(\Leftrightarrow\left\{{}\begin{matrix}m^2+6m=7\\2n+7\ne-n^2-9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2+6m-7=0\\n^2+2n+16\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m+7\right)=0\\\left(n+1\right)^2+15\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m-1=0\\m+7=0\end{matrix}\right.\\\left(n+1\right)^2+15\ne0\left(luônđúng\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-7\end{matrix}\right.\)

\(\left(d3\right)\equiv\left(d4\right)\Leftrightarrow\left\{{}\begin{matrix}m^2+6m=7\\2n+7=-n^2-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+6m-7=0\\n^2+2n+16=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m+7\right)=0\\\left(n+1\right)^2+15=0\left(vôlí\right)\end{matrix}\right.\)

20 tháng 1 2019

1.

a, \(\left\{{}\begin{matrix}2x-3y=3\\-4x=3x-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=3\\-4x-3x=13\end{matrix}\right.\)\(\left\{{}\begin{matrix}-4x+6y=-6\\-4x-3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9y=-19\\-4x+6y=-6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\y=-\dfrac{19}{9}\end{matrix}\right.\)

b, \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=3\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=9\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=2\\\dfrac{3}{x}+\dfrac{3}{y}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\left(TM\right)\\y=\dfrac{1}{2}\left(TM\right)\end{matrix}\right.\)

c, \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{5}{y}=1\\\dfrac{2}{x}+\dfrac{1}{y}=3\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{5}{y}=1\\\dfrac{10}{x}+\dfrac{5}{y}=15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{x}=16\\\dfrac{10}{x}+\dfrac{5}{y}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{16}\left(TM\right)\\y=\dfrac{13}{7}\left(TM\right)\end{matrix}\right.\)

d, \(\left\{{}\begin{matrix}\sqrt{x+1}-3\sqrt{y-1}=-4\\2\sqrt{x+1}-\sqrt{y-1}=2\end{matrix}\right.\left(x\ge-1,y\ge1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x+1}-6\sqrt{y-1}=-8\\2\sqrt{x+1}-\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-5\sqrt{y-1}=-10\\2\sqrt{x+1}-6\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y-1}=2\\2\sqrt{x+1}-6\sqrt{y-1}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\y=5\left(TM\right)\end{matrix}\right.\)

26 tháng 4 2019

Câu a sai rồi : \(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)mới đúng

1) Thay x=0;y=1 vào (d)=>m=2

Hoành độ giao điểm là nghiệm của phương trình:\(x^2=x+m-1\)

\(x^2-x-m+1=0\)2 điểm phân biệt => \(\Delta>0\)

\(\Delta>0=>1-4.\left(-m+1\right)=4m-3>0=>m>\frac{3}{4}\)

Áp dụng hệ thức Vi-ét:

\(x_1+x_2=1;x_1x_2=-m+1\)

\(4.\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-x_1x_2+3=0=>4.\left(\frac{x_1+x_2}{x_1x_2}\right)-x_1x_2+3=0\)

\(\Rightarrow\frac{4}{-m+1}+m-1+3=0=>\frac{4}{-m+1}+m-2=0=>m^2-3m-2=0\)

Dùng công thức nghiệm được \(\Rightarrow x_1=\frac{3-\sqrt{17}}{2}\left(KTM\right);x_2=\frac{3+\sqrt{17}}{2}\left(TM\right)\)

Vậy...