Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = - 3\(x\).(\(x-5\)) + 3(\(x^2\) - 4\(x\)) - 3\(x\) - 10
A = - 3\(x^2\) + 15\(x\) + 3\(x^2\) - 12\(x\) - 3\(x\) - 10
A = (- 3\(x^2\) + 3\(x^2\)) + (15\(x\) - 12\(x\) - 3\(x\)) - 10
A = 0 + (3\(x-3x\)) - 10
A = 0 - 10
A = - 10
\(a\\ -5x^2+3x.\left(x+2\right)=-5x^2+3x^2+6x=-2x^2+6x\\ b\\ -2x.\left(1-x^2\right)-2x^3=-2x+2x^3-2x^3=-2x\\ c\\ 4x.\left(x-1\right)-4.\left(x^2+2x-1\right)\\ =4x^2-4x-4x^2-8x+4=-12x+4\)
\(d\\ 6x^3-2x^2.\left(-x^2-3x\right)=6x^3+2x^4+6x^3=2x^4+12x^3\\ e\\ 3x.\left(x-1\right)-\left(1+2x\right).5x\\ =3x^2-3x-5x-10x^2=-7x^2-8x\\ f\\ -5x^2-\left(x-6\right).\left(-2x^2\right)=-5x^2+2x^3-12x^2=2x^3-17x^2\)
`@` `\text {Ans}`
`\downarrow`
*Máy tớ cam hơi mờ, cậu thông cảm ._.*
Cậu viết lại rõ đề câu c, nhé.
Tham khảo nhé :
\(\left|x-2\right|-3x\left|+\right|x-1\left|x-3\right|=0\)
\(\Leftrightarrow\left|x-2\right|-3=0\)hoặc \(5+\left|x\right|=0\)
Xét \(\left|x-2\right|-3=0\Leftrightarrow\left|x-2\right|=3\)
\(\Rightarrow x-2=\pm3\)
Với: \(x-2=3\Rightarrow x=5\)
Với: \(x-2=-3\Rightarrow x=-1\)
Vậy:..
\(a,\left(4x+1\right)\left(x-3\right)-\left(x-7\right)\left(4x-1\right)=15\\ \Leftrightarrow4x^2+x-12x-3-\left(4x^2-28x-x+7\right)-15=0\\ \Leftrightarrow4x^2-11x-3-4x^2+29x-7-15=0\\ \Leftrightarrow18x=25\\ \Leftrightarrow x=\dfrac{25}{18}\)
Vậy \(x=\dfrac{25}{18}\)
\(b,\left(x+1\right)\left(x^2-x+1\right)-x\left(x^2-3\right)=4\\ \Leftrightarrow x^3+1-x^3+3x-4=0\\ \Leftrightarrow3x-3=0\\ \Leftrightarrow x=1\)
Vậy \(x=1\)
\(c,\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)-6x=0\\ \Leftrightarrow x^3-27+5x-x^3-6x=0\\ \Leftrightarrow-x-27=0\\ \Leftrightarrow x=-27\)
Vậy \(x=-27\)
\(d,\left(5x-1\right)\left(5x+1\right)=25x^2-7x+15\\ \Leftrightarrow25x^2-1-25x^2+7x-15=0\\ \Leftrightarrow7x-16=0\\ \Leftrightarrow x=\dfrac{16}{7}\)
Vậy \(x=\dfrac{16}{7}\)
a) `3x+5 =0`
`3x=-5`
`x=-5/3`
`b) -4x+8=0`
`-4x =-8`
`x=2`
`c) 3x -6=0`
`3x=6`
`x=2`
`d)x^2 +x =0`
`x(x+1) =0`
`=>[(x=0),(x=-1):}`
`e) x^2 -4 =0`
`x^2 =4`
`=> x = +-2`
`f) x^3 -27 =0`
`x^3 =27`
`=> x=3`
`g) 3x^2 +4 =0`
`3x^2 =-4`
`x^2 =-4/3(vô-lí)`
=> Đa thức ko có nghiệm
h) `x^3 -4x =0`
`x(x^2 -4) =0`
`=>[(x=0),(x^2=4 => x=+-2):}`
i) `2x^3 -32x =0`
`2x(x^2 -16)=0`
`=>[(2x=0),(x^2=16):}`
`=>[(x=0),(x=+-4):}`
Giải:
\(E=x^2-3x-15\)
\(\Leftrightarrow E=x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2-\dfrac{69}{4}\)
\(\Leftrightarrow E=\left(x-\dfrac{3}{2}\right)^2-\dfrac{69}{4}\ge-\dfrac{69}{4};\forall x\)
\(\Leftrightarrow E_{Min}=-\dfrac{69}{4}\)
\("="\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
Vậy ...
\(E=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{69}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2-\dfrac{69}{4}>=-\dfrac{69}{4}\)
Dấu '=' xảy ra khi x=3/2