K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

Cô hướng dẫn nhé :) 

a. ĐK: \(x>0;x\ne1\) 

Ta có \(E=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)+4\sqrt{x}\left(x-1\right)}{x-1}:\frac{x-1}{\sqrt{x}}\)

\(\Leftrightarrow E=\frac{4x\sqrt{x}}{x-1}.\frac{\sqrt{x}}{x-1}=\frac{4x^2}{\left(x-1\right)^2}\)

b. Để \(E=2\Rightarrow\frac{4x^2}{\left(x-1\right)^2}=2\Leftrightarrow2x^2+4x-2=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}-1\\x=-\sqrt{2}-1\left(L\right)\end{cases}}\)

c. \(x=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=2\)

Vậy E = 16.

13 tháng 6 2016

a)Rút gọn E ta đc:

\(\frac{4x^2+\sqrt{x}\left(2x+2\right)-4x}{x^2-2x+1}\)

b)Với E=2\(\Leftrightarrow\)\(\frac{4x^2+\sqrt{x}\left(2x+2\right)-4x}{x^2-2x+1}=2\)

\(\Leftrightarrow\frac{4x^2}{x^2-2x+1}+\frac{2\sqrt{x^3}}{x^2-2x+1}-\frac{4x}{x^2-2x+1}+\frac{2\sqrt{x}}{x^2-2x+1}-2=0\)

\(\Leftrightarrow\frac{2\left(x^2\sqrt{x^3}+\sqrt{x}-1\right)}{x^2-2x+1}=0\)

\(\Leftrightarrow x^2+\sqrt{x^3}+\sqrt{x}-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{-\sqrt{x^3}-\sqrt{x}+1}=0\left(tm\right)\\\sqrt{-\sqrt{x^3}-\sqrt{x}+1}+x=0\left(loai\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-\sqrt{5}-3=0\left(loai\right)\\2x+\sqrt{5}-3=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=-\frac{\sqrt{5}-3}{2}\left(tm\right)\)

a: Sửa đề: \(E=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}+4\sqrt{x}\right):\dfrac{x-1}{\sqrt{x}}\)

\(=\left(\dfrac{4\sqrt{x}+4\sqrt{x}\left(x-1\right)}{x-1}\right)\cdot\dfrac{\sqrt{x}}{x-1}\)

\(=\dfrac{4\sqrt{x}\left(1+x-1\right)}{x-1}\cdot\dfrac{\sqrt{x}}{x-1}=\dfrac{4x^2}{\left(x-1\right)^2}\)

b: Để E=2 thì \(4x^2=2\left(x-1\right)^2\)

\(\Leftrightarrow4x^2-2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow4x^2-2x^2+4x-2=0\)

\(\Leftrightarrow2x^2+4x-2=0\)

\(\Leftrightarrow x^2+2x-1=0\)

\(\Leftrightarrow\left(x+1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{2}\\x+1=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}-1\left(nhận\right)\\x=-\sqrt{2}-1\left(loại\right)\end{matrix}\right.\)

c: \(x=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

Thay x=2 vào E, ta được: 

\(E=\dfrac{4\cdot2^2}{\left(2-1\right)^2}=16\)

a: Ta có: \(E=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right):\left(\dfrac{x-1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{4\sqrt{x}+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}}{x-1}\)

\(=\dfrac{4x^2}{\left(x-1\right)^2}\)

b: Để E=2 thì \(4x^2=2\left(x-1\right)^2\)

\(\Leftrightarrow4x^2-2x^2+4x-2=0\)

\(\Leftrightarrow2x^2+4x-2=0\)

\(\Leftrightarrow x^2+2x-1=0\)

\(\Leftrightarrow\left(x+1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}-1\\x=\sqrt{2}-1\end{matrix}\right.\)

c: Ta có: \(x=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=2\)

Thay x=2 vào E, ta được:

\(E=\dfrac{4\cdot2^2}{1}=16\)

1 tháng 11 2016

a/ ĐKXĐ : \(0\le x\ne4\)

\(B=\frac{x\sqrt{x}+15\sqrt{x}-35}{x-\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}-1}{\sqrt{x}-2}\)

\(=\frac{x\sqrt{x}+15\sqrt{x}-35-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x\sqrt{x}+15\sqrt{x}-35-x+4-x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x\sqrt{x}-2x+15\sqrt{x}-30}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-2\right)\left(x+15\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{x+15}{\sqrt{x}+1}\)

c/ \(x=21-4\sqrt{5}=\left(2\sqrt{5}-1\right)^2\) thay vào B được

\(B=\frac{21-4\sqrt{5}+15}{2\sqrt{5}-1+1}=\frac{36-4\sqrt{5}}{2\sqrt{5}}=\frac{-10+18\sqrt{5}}{5}\)

d/ Đặt \(t=\sqrt{x},t\ge0\) thì \(B=\frac{t^2+15}{t+1}=6\Leftrightarrow t^2+15=6\left(t+1\right)\Leftrightarrow t^2-6t+9=0\Leftrightarrow t=3\)

=> x = 9

e/ \(B=\frac{t^2+15}{t+1}=\frac{6\left(t+1\right)+\left(t^2-6t+9\right)}{t+1}=\frac{\left(t-3\right)^2}{t+1}+6\ge6\)

Đẳng thức xảy ra khi t = 3 <=> x = 9

Vậy B đạt giá trị nhỏ nhất bằng 6 khi x = 9

7 tháng 8 2018

a/ ĐKXĐ : 0≤x≠4

B=x√x+15√x−35x−√x−2 −√x+2√x+1 −√x−1√x−2 

=x√x+15√x−35−(√x+2)(√x−2)−(√x+1)(√x−1)(√x+1)(√x−2) 

=x√x+15√x−35−x+4−x+1(√x+1)(√x−2) 

=x√x−2x+15√x−30(√x+1)(√x−2) =(√x−2)(x+15)(√x+1)(√x−2) =x+15√x+1 

c/ x=21−4√5=(2√5−1)2 thay vào B được

B=21−4√5+152√5−1+1 =36−4√52√5 =−10+18√55 

d/ Đặt t=√x,t≥0 thì B=t2+15t+1 =6⇔t2+15=6(t+1)⇔t2−6t+9=0⇔t=3

=> x = 9

e/ B=t2+15t+1 =6(t+1)+(t2−6t+9)t+1 =(t−3)2t+1 +6≥6

Đẳng thức xảy ra khi t = 3 <=> x = 9

Vậy B đạt giá trị nhỏ nhất bằng 6 khi x = 9

15 tháng 8 2018

@Akai Haruma giup mk vs

a: ĐKXĐ: x>0; x<>1

b: \(E=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4\sqrt{x}\left(x-1\right)}{x-1}:\dfrac{x-1}{\sqrt{x}}\)

\(=\dfrac{4\sqrt{x}+4x\sqrt{x}-4\sqrt{x}}{x-1}\cdot\dfrac{\sqrt{x}}{x-1}\)

\(=\dfrac{4x^2}{\left(x-1\right)^2}\)

c: Để E=2 thì \(4x^2=2x^2-4x+2\)

\(\Leftrightarrow2x^2+4x-2=0\)

hay \(x\in\left\{-1+\sqrt{2};-1-\sqrt{2}\right\}\)