K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2024

\(E=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{30}+...+\dfrac{1}{972}\)

\(\dfrac{1}{3}E=\dfrac{1}{3}\cdot\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{30}+...+\dfrac{1}{972}\right)\)

\(\dfrac{1}{3}E=\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{90}+...+\dfrac{1}{2916}\) 

\(4\cdot\dfrac{1}{3}E=4\cdot\left(\dfrac{1}{12}+\dfrac{1}{36}+...+\dfrac{1}{2916}\right)\)

\(\dfrac{4}{3}E=\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{243}\)

\(\dfrac{4}{3}E=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^5}\)

\(\dfrac{4}{3}E=\dfrac{3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^5}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^5}\right)}{2}\)

\(\dfrac{4}{3}E=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^4}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^5}\right)}{2}\)

\(\dfrac{4}{3}E=\dfrac{1-\dfrac{1}{3^5}}{2}\) 

\(\dfrac{4}{3}E=\dfrac{1}{2}\cdot\dfrac{3^5-1}{3^5}\)

\(E=\dfrac{3^5-1}{2\cdot3^5}\cdot\dfrac{3}{4}\)

\(E=\dfrac{3^5-1}{8\cdot3^4}\)

20 tháng 5 2021

đề bài sai sai bạn xem lại 

1/2 hay 1/4

26 tháng 3 2018

\(B=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\\\)

\(3B=3\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\)

\(3B=\dfrac{3}{4}+\dfrac{3}{12}+\dfrac{3}{36}+\dfrac{3}{108}+\dfrac{3}{324}+\dfrac{3}{972}\)

\(3B=\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\)

\(2B=3B-B\)

\(2B=\left(\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\right)-\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\)

\(2B=\dfrac{3}{4}-\dfrac{1}{972}=\dfrac{729-1}{972}=\dfrac{728}{972}=\dfrac{182}{243}\)

\(B=\dfrac{182}{243}:\dfrac{1}{2}=\dfrac{182\cdot2}{243}=\dfrac{364}{243}\)

26 tháng 3 2018

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\\ 2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\\ 2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\\ A=1-\dfrac{1}{2^9}=\dfrac{511}{512}\)

\(B=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\\ 3B=\dfrac{3}{4}+\dfrac{3}{12}+\dfrac{3}{36}+\dfrac{3}{108}+\dfrac{3}{324}+\dfrac{3}{972}\\ 3B=\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\\ 3B-B=\left(\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\right)-\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\\ 2B=\dfrac{3}{4}-\dfrac{1}{972}=\dfrac{182}{243}\\ B=\dfrac{364}{243}\)

1 tháng 8 2017

c) E = \(\dfrac{4116-14}{10290-35}\) và K = \(\dfrac{2929-101}{2.1919+404}\)

E = \(\dfrac{4116-14}{10290-35}\)

E = \(\dfrac{14.\left(294-1\right)}{35.\left(294-1\right)}\)

E = \(\dfrac{14}{35}\)

K = \(\dfrac{2929-101}{2.1919+404}\)

K = \(\dfrac{101.\left(29-1\right)}{101.\left(38+4\right)}\)

K = \(\dfrac{29-1}{34+8}\)

K = \(\dfrac{28}{42}\) = \(\dfrac{2}{3}\)

Ta có : E = \(\dfrac{14}{35}\) và K = \(\dfrac{2}{3}\)

\(\dfrac{14}{35}\) = \(\dfrac{42}{105}\)

\(\dfrac{2}{3}\) = \(\dfrac{70}{105}\)

Vậy E < K

Các câu còn lại tương tự

3 tháng 8 2017

a, (\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)).10 - x = 0

<=> \(\dfrac{5}{6}.10-x=0\)
<=> \(\dfrac{25}{3}-x=0\)
<=> x = \(\dfrac{25}{3}\) (thỏa mãn)
@Hoàng Mạnh Quân

22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

16 tháng 11 2018

1/

a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)

\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)

\(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)

\(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)

16 tháng 11 2018

b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993

2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993

2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993

2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993

2.(1 − 1/x+1) = 3984/1993

1 − 1/x + 1= 3984/1993 :2

1 − 1/x+1 = 1992/1993

1/x+1 = 1 − 1992/1993

1/x+1=1/1993

<=>x+1 = 1993

<=>x+1=1993

<=> x+1=1993

<=> x = 1993-1

<=> x = 1992

12 tháng 3 2017

E=\(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\\ E=\dfrac{1}{90}-\left(\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{2}\right)\\ E=\dfrac{1}{90}-\left(\dfrac{1}{9.8}+\dfrac{1}{8.7}+\dfrac{1}{7.6}+\dfrac{1}{6.5}+\dfrac{1}{5.4}+\dfrac{1}{4.3}+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\\ E=\dfrac{1}{90}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)\\ E=\dfrac{1}{90}-\left(1-\dfrac{1}{9}\right)\\ E=\dfrac{1}{90}-\dfrac{8}{9}\\ E=\dfrac{1}{90}-\dfrac{80}{90}\\ E=-\dfrac{79}{90}\)Vậy:\(E=-\dfrac{79}{90}\)

12 tháng 3 2017

E=\(\dfrac{1}{10.9}-\dfrac{1}{9.8}-\dfrac{1}{8.7}-\dfrac{1}{7.6}-\dfrac{1}{6.5}-\dfrac{1}{5.4}-\dfrac{1}{4.3}-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

E=\(\dfrac{1}{10}-\dfrac{1}{1}\)

E=\(\dfrac{-9}{10}\)