K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

A B C D O M N E F

a) Ta có:

+) M là trung điểm OD

\(\Rightarrow MD=MO=\frac{1}{2}OD\)

N là trung điểm OB

\(\Rightarrow NB=NO=\frac{1}{2}OB\)

Mà OD=OB ( O là giao điểm 2 đường chéo của hình bình hành ABCD)

Suy ra ON=OM=NB=MD (1)

Ta lại có OA=OC

Tứ giác AMCN có hai đường chéo cắt nhau tại trung điểm mỗi đường nên là hình bình hành

b) AMCN là hình bình hành =>NC//AM=> FC//AE mà AF//EC

Vậy suy ra AFCE là hình bình hành

O là trung điểm AC => O là trung điểm EF=> E đối xứng với F qua O

c) AC, BD, EF đều qua O nên đồng quy

d) Xét tam giác DNC có NC//ME

\(\Rightarrow\frac{DE}{EC}=\frac{DM}{MN}\)

Mà DM=OM=ON ( theo 1)

=> \(DM=\frac{1}{2}MN\)

=>\(\frac{DE}{EC}=\frac{DM}{MN}=\frac{1}{2}\Rightarrow DE=\frac{1}{2}EC\)

e) Để hình bình hành AMCN là hình chữ nhật thì MN=AC 

Mà \(MN=\frac{1}{2}BD\)nên \(AC=\frac{1}{2}BD\)

Vậy ABCD cần điều kiện là \(AC=\frac{1}{2}BD\)thì AMCN là hình chữ nhật

23 tháng 8 2018

a) Vì ABCD là hình thoi(gt). Mà AC và BD cắt nhau tại O

=> O là trung điểm của AC và BD (t/c của hình bình hành)

=> OB=OD. Mà BE=DF(gt)

=> OB-BE=OD-DF => OE=OF. Mà O nằm giữa E và F

=> O là trung điểm của EF

Xét tứ giác AECF có: AC cắt EF tại O

Mà O là trung điểm của AC( c/m trên )

O là trung điểm của EF( c/m trên )

=> AECF là hình bình hành (Tứ giác có 2 đ/c cắt nhau tại trung điểm của mỗi đg là hình bình hành)

b) Để AECF là hình thoi => \(AC\perp EF\) tại O

=> \(AC\perp BD\) tại O \(\left(E,F\in\left(O\right)\right)\)

Xét hình bình hành ABCD có: \(AC\perp BD\) tại O (c/m trên)

=> ABCD là hình thoi (Hình bình hành có 2 đ/c vuông góc là hình thoi)

Vậy để AECF là hình thoi thì ABCD là hình thoi

26 tháng 7 2021

a) Vì ABCD là hình thoi(gt). Mà AC và BD cắt nhau tại O

=> O là trung điểm của AC và BD (t/c của hình bình hành)

=> OB=OD. Mà BE=DF(gt)

=> OB-BE=OD-DF => OE=OF. Mà O nằm giữa E và F

=> O là trung điểm của EF

Xét tứ giác AECF có: AC cắt EF tại O

Mà O là trung điểm của AC( c/m trên )

O là trung điểm của EF( c/m trên )

=> AECF là hình bình hành (Tứ giác có 2 đ/c cắt nhau tại trung điểm của mỗi đg là hình bình hành)

b) Để AECF là hình thoi => AC⊥EFAC⊥EF tại O

=> AC⊥BD tại O (E,F∈(O)

Xét hình bình hành ABCD có: AC⊥BDAC⊥BD tại O (c/m trên)

=> ABCD là hình thoi (Hình bình hành có 2 đ/c vuông góc là hình thoi)

Vậy để AECF là hình thoi thì ABCD là hình thoi