K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(E=-\dfrac{1}{3}\cdot\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-...-\dfrac{1}{50}\left(1+2+3+...+50\right)\)

\(=\dfrac{-1}{3}\cdot\dfrac{3\cdot4}{2}-\dfrac{1}{4}\cdot\dfrac{4\cdot5}{2}-...-\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)

\(=\dfrac{-4}{2}-\dfrac{5}{2}-...-\dfrac{51}{2}\)

\(=\dfrac{-\left(4+5+...+51\right)}{2}\)

\(=\dfrac{-\left(51+4\right)\cdot\dfrac{48}{2}}{2}=-\dfrac{1320}{2}=-660\)

7 tháng 10 2019

\(=\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\left(1-\frac{1}{5^2}\right)...\left(1-\frac{1}{50^2}\right)\)

\(=\frac{8}{3\cdot3}\cdot\frac{15}{4\cdot4}\cdot\frac{24}{5\cdot5}\cdot....\cdot\frac{2499}{50\cdot50}\)

\(=\frac{\left(2\cdot4\right)\left(3\cdot5\right)\left(4\cdot6\right)...\left(49\cdot51\right)}{\left(3\cdot3\right)\left(4\cdot4\right)\left(5\cdot5\right)...\left(50\cdot50\right)}\)

\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot49\right)\left(4\cdot5\cdot6\cdot...\cdot51\right)}{\left(3\cdot4\cdot5\cdot...\cdot50\right)\left(3\cdot4\cdot5\cdot...\cdot50\right)}\)

\(=\frac{2\cdot51}{50\cdot3}\)

a) Ta có: \(\frac{2}{3}x-\frac{1}{2}=\frac{1}{10}\)

\(\Leftrightarrow x\cdot\frac{2}{3}=\frac{1}{10}+\frac{1}{2}=\frac{6}{10}\)

hay \(x=\frac{6}{10}:\frac{2}{3}=\frac{6}{10}\cdot\frac{3}{2}=\frac{18}{20}=\frac{9}{10}\)

Vậy: \(x=\frac{9}{10}\)

b) Ta có: \(5\frac{4}{7}:x=13\)

\(\Leftrightarrow\frac{39}{7}:x=13\)

\(\Leftrightarrow x=\frac{39}{7}:13=\frac{39}{7}\cdot\frac{1}{13}=\frac{3}{7}\)

Vậy: \(x=\frac{3}{7}\)

c) Ta có: \(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)

\(\Leftrightarrow\frac{14}{5}x-50=51\cdot\frac{2}{3}=34\)

\(\Leftrightarrow x\cdot\frac{14}{5}=84\)

\(\Leftrightarrow x=84:\frac{14}{5}=84\cdot\frac{5}{14}=\frac{420}{14}=30\)

Vậy: x=30

d) Ta có: \(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)

\(\Leftrightarrow\frac{1}{3}:x=\frac{3}{5}-\frac{2}{3}=\frac{-1}{15}\)

hay \(x=\frac{1}{3}:\frac{-1}{15}=\frac{1}{3}\cdot\left(-15\right)=\frac{-15}{3}=-5\)

Vậy: x=-5

e) Ta có: \(8\frac{2}{3}:x-10=-8\)

\(\Leftrightarrow\frac{26}{3}:x=2\)

hay \(x=\frac{26}{3}:2=\frac{26}{3}\cdot\frac{1}{2}=\frac{26}{6}=\frac{13}{3}\)

Vậy: \(x=\frac{13}{3}\)

g) Ta có: \(x+30\%=-1.3\)

\(\Leftrightarrow x+\frac{3}{10}=\frac{-13}{10}\)

hay \(x=\frac{-13}{10}-\frac{3}{10}=\frac{-16}{10}=\frac{-8}{5}\)

Vậy: \(x=\frac{-8}{5}\)

i) Ta có: \(3\frac{1}{3}x+16\frac{3}{4}=-13.25\)

\(\Leftrightarrow x\cdot\frac{10}{3}+\frac{67}{4}=-\frac{53}{4}\)

\(\Leftrightarrow x\cdot\frac{10}{3}=\frac{-53}{4}-\frac{67}{4}=-30\)

\(\Leftrightarrow x=-30:\frac{10}{3}=-30\cdot\frac{3}{10}=\frac{-90}{10}=-9\)

Vậy: x=-9

k) Ta có: \(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)

\(\Leftrightarrow x\cdot\frac{14}{5}-50=51\cdot\frac{2}{3}=34\)

\(\Leftrightarrow x\cdot\frac{14}{5}=34+50=84\)

hay \(x=84:\frac{14}{5}=84\cdot\frac{5}{14}=30\)

Vậy: x=30

m) Ta có: \(\left|2x-1\right|=\left(-4\right)^2\)

\(\Leftrightarrow\left|2x-1\right|=16\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=16\\2x-1=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=17\\2x=-15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{17}{2}\\x=\frac{-15}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{17}{2};\frac{-15}{2}\right\}\)

2 tháng 8 2020

thank you nha!thanghoa

8 tháng 3 2017

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+....+\frac{1}{1+2+3+..+50}\)

\(=\frac{1}{\frac{2\left(2+1\right)}{2}}+\frac{1}{\frac{3\left(3+1\right)}{2}}+\frac{1}{\frac{4\left(4+1\right)}{2}}+....+\frac{1}{\frac{2015\left(2015+1\right)}{2}}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{2015.2016}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{2016}\right)=\frac{1007}{1008}\)

19 tháng 2 2017

Chú ý: \(a^2-1=\left(a-1\right)\left(a+1\right)\)

Áp dụng:

\(A=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}...\frac{49.51}{50^2}=\frac{2.3.4^2.5^2...49^2.50.51}{3^2.4^2.5^2...50^2}=\frac{2.51}{3.50}=\frac{51}{75}\)

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+..+\frac{1}{1+2+3+...+50}\)

Ta có :

\(A=\frac{2}{2\left(1+2\right)}+\frac{2}{2\left(1+2+3\right)}+...+\frac{2}{2\left(1+2+..+50\right)}\)

\(A=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{2550}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)

\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(A=2\times\frac{49}{102}\)

\(A=\frac{49}{51}\)

16 tháng 5 2017

đề bài mk chỉ cho 50 thôi ko có 51 đâu

nên mk cho bạn 1k thôi nhé

13 tháng 8 2018

(: ko bít. tui giỏi tiếng anh nhưng ngu toán lắm