Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)
\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)
Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\) \(\Rightarrow\Delta AHB=\Delta AEB\)
\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến
1: góc BFC=góc BEC=90 độ
=>BFEC nộitiếp
Tâm là trung điểm của BC
2: góc EFC=góc DAC
góc DFC=góc EBC
góc DAC=góc EBC
=>góc EFC=góc DFC
=>FC là phân giác của góc EFD
BFEC nội tiếp
=>góc AFE=góc ACB
mà góc A chung
nên ΔAFE đồng dạng với ΔACB
=>AF/AC=AE/AB
=>AF*AB=AC*AE