Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số phải tìm là n; số chính phương đó là a; gọi b là số tự nhiên mà n là lập phương của nó.
Ta thấy n chia hết cho 2 và 3 (vì số chính phương hay lập phương của một số tự nhiên đều là số tự nhiên) nên để n nhỏ nhất, ta chọn n = 2x.3y (x và y khác 0).
n : 2 = 2x.3y : 2 = 2x-1.3y = a2 suy ra x - 1 và y đều chia hết cho 2 hay đều là số chẵn.
n : 3 = 2x.3y : 3 = 2x.3y-1 = b3 suy ra x và y - 1 đều chia hết cho 3.
Từ x - 1 chia hết cho 2 và x chia hết cho 3, để nhỏ nhất ta chọn x = 3
Từ y chia hết cho 2 và y - 1 chia hết cho 3, để nhỏ nhất ta chọn y = 4
Vậy n = 23.34 = 648
Số cần tìm là 648.
Gọi số cần tìm là ab (có gạch nagng trên đầu)
Ta có : a + b $\ge$≥7
và a2+b2 $\le$≤ 230 => a và b $\le$≤ 5
=> Có các cặp số 5 và 4 ; 5 và 3 ; 5 và 2 ; 4 và 3 (1)
2 x ba $\le$≤ ab => 20b+2a $\le$≤ 10a+b => 19b $\le$≤ 8a
Trong các cặp sô đã nêu ở (1), chỉ có 2 . 19 = 38 $\le$≤ 8 . 5 = 40
=> a = 5 ; b = 2
Vậy số cần tìm là 52
\(a+b\ge7\)
\(a^2+b^2\le30\Rightarrow a,b\le5\)
\(\Rightarrow\left(a,b\right)=\left(5;4\right)\left(5;3\right)\left(5;2\right)\left(4;3\right)\)
\(2ba\le ab\Rightarrow20b+2a\le10a+b\Rightarrow19b\le8a\)
Thử các cặp số tìm được ta được số
52
\(a+b\ge7\)
\(a^2+b^2\Leftarrow30\Rightarrow a,b\Leftarrow5\)
\(\Rightarrow\) Có các cặp số : \(\left\{5,4;5,3;5,2;4,3\right\}\)
\(2\times ba\Leftarrow ab\Rightarrow20b+2a\Leftarrow10a+b\Rightarrow19b\Leftarrow8a\)
Thử 4 cặp số ta được số cần tìm là 52