Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Câu 1: }\\ \text{Theo bài ra ta có : }x+y-z=10\\ \dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{2}=\dfrac{4y}{12}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\\ \dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{3y}{12}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\\ \text{Từ }\left(1\right)\text{ và }\left(2\right)\text{ suy ra : }\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\\ \text{ Áp dụng tính chất dãy tỉ số bằng nhau ta được : }\\ \dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=2\Rightarrow x=16\\\dfrac{y}{12}=2\Rightarrow y=24\\\dfrac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\\ \text{Vậy }x=16\\ y=24\\ z=30\)
\(\text{Câu 2 : }\\ \text{Ta có : }\dfrac{x}{2}=\dfrac{y}{5}\\ \Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{5}\right)^2=\dfrac{x}{2}\cdot\dfrac{y}{5}=\dfrac{xy}{2\cdot5}=\dfrac{7+3}{10}=\dfrac{10}{10}=1\\ \Rightarrow\left\{{}\begin{matrix}\left(\dfrac{x}{2}\right)^2=1\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\\\left(\dfrac{y}{5}\right)^2=1\Rightarrow\dfrac{y}{5}=1\Rightarrow y=5\end{matrix}\right.\\ \text{Vậy }x=2\\ y=5\)
Câu 3 : \(\dfrac{\text{Giải}}{ }\)
Gọi số học sinh 4 khối \(6,7,8,9\) lần lượt là \(a;b;c;d\) \(\left(a;b;c;d\in N\text{*}\right)\) \(\left(em\right)\)
Theo bài ra ta có : \(b-d=70\)
\(a;b;c;d\) tỉ lệ với \(9;8;7;6\) \(\Rightarrow\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{d}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{d}{6}=\dfrac{b-d}{8-6}=\dfrac{70}{2}=35\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{9}=35\Rightarrow a=315\\\dfrac{b}{8}=35\Rightarrow b=280\\\dfrac{c}{7}=35\Rightarrow c=245\\\dfrac{d}{6}=35\Rightarrow d=210\end{matrix}\right.\)
\(\text{Vậy }a=315\\ b=280\\ c=245\\ d=210\)
ko thik surf trc khi ? đấy bn có ý gì ko nếu bn ko thik trả lời thì thôi mik ko ép chứ mik thik hỏi gì thì kệ mik mong Ace Legona hiểu cho.
Gọi số học sinh 3 lớp 7A, 7B, 7C lần lượt là a, b, c
Theo bài ra ta có: \(a=\dfrac{21}{20}b;b=\dfrac{4}{5}c\left(a+b-c=12\right)\)
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{20};\dfrac{b}{4}=\dfrac{c}{5}\Rightarrow\dfrac{a}{21}=\dfrac{b}{20}=\dfrac{c}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{21}=\dfrac{b}{20}=\dfrac{c}{25}=\dfrac{a+b-c}{21+20-25}=\dfrac{32}{16}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{21}=2\Rightarrow a=2.21=42\\\dfrac{b}{20}=2\Rightarrow b=2.20=40\\\dfrac{c}{25}=2\Rightarrow c=2.25=50\end{matrix}\right.\)
Vậy số học sinh 3 lớp 7A, 7B, 7C lần lượt là 42,40,50.
Bài 4: bạn tham khảo ở đây: https://olm.vn/hoi-dap/question/149762.html
Bài 6: bạn tham khảo ở đây: https://olm.vn/hoi-dap/question/656310.html
Bạn kham khảo nha:
Bài 1: Câu hỏi của Lê Thị Bích Tuyền - Toán lớp 7 - Học toán với OnlineMath
Bài 2: Câu hỏi của mai pham nha ca - Toán lớp 7 - Học toán với OnlineMath
Bài 3: Câu hỏi của Nguyễn Ngọc Khánh - Toán lớp 7 - Học toán với OnlineMath
Bài 4: Câu hỏi của tran gia nhat tien - Toán lớp 7 - Học toán với OnlineMath
Bài 5: Câu hỏi của Đặng Kim Nguyên - Toán lớp 7 - Học toán với OnlineMath
Bài 6: Câu hỏi của Saito Haijme - Toán lớp 7 - Học toán với OnlineMath
Gọi số học sinh của các lớp 7A, 7B, 7C lần lượt là \(x,y,z\) (\(x,y,z\in N\))
Theo đề bài ta có:
\(\dfrac{2}{3}x=\dfrac{3}{4}y=\dfrac{4}{5}z\) (1) và \(x+y-z=57\) (2)
Chia mỗi tỉ số của (1) cho 12 (BCNN của 2, 3, 4) ta được:
\(\dfrac{2}{3.12}x=\dfrac{2}{4.12}y=\dfrac{4}{5.12}z\) hay \(\dfrac{x}{18}=\dfrac{y}{16}=\dfrac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và điều kiện (2) ta có:
\(\dfrac{x}{18}=\dfrac{y}{16}=\dfrac{z}{15}=\dfrac{x+y-z}{18+16-15}=\dfrac{57}{19}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.18=54\\y=3.16=48\\z=3.15=45\end{matrix}\right.\)
Vậy lớp 7A có 54 học sinh, lớp 7B có 48 học sinh và lớp 7C có 45 học sinh.
- Gọi số học sinh các lớp 7A, 7B, 7C lần lượt là : a, b, c
- Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\) = \(\dfrac{12a}{18}=\dfrac{12b}{16}=\dfrac{12c}{15}\)
- Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{12a}{18}=\dfrac{12b}{16}=\dfrac{12c}{15}\) = \(\dfrac{12a+12b-12c}{18+16-15}\)= \(\dfrac{12\left(a+b-c\right)}{18+16-15}\)
= \(\dfrac{12\cdot57}{19}\)= 36.
- Suy ra:
+, a = \(36\cdot\dfrac{3}{2}\) =54;
+, b = \(36\cdot\dfrac{4}{3}\) =48;
+, c = \(36\cdot\dfrac{5}{4}\) = 45
-Vậy số học sinh mỗi lớp 7A, 7B, 7C lần lượt là 54, 48, 45.
Lời giải:
Gọi số hs lớp 7A, 7B, 7C lần lượt là $a,b,c>0$
Theo bài ta ta có:
\(\left\{\begin{matrix} \frac{2}{3}a=\frac{3}{4}b=\frac{4}{5}c\\ c=a+b-57\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} \frac{a}{\frac{3}{2}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{5}{4}}\\ a+b-c=57\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{\frac{3}{2}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{5}{4}}=\frac{a+b-c}{\frac{3}{2}+\frac{4}{3}-\frac{5}{4}}=\frac{57}{\frac{19}{12}}=36\)
\(\Rightarrow \left\{\begin{matrix} a=\frac{3}{2}.36=54\\ b=36.\frac{4}{3}=48\\ c=36.\frac{5}{4}=45\end{matrix}\right.\)
6) Tìm giá trị lớn nhất : A = 0,5 - | x - 3,5 |
Vì | x - 3,5 | \(\ge\) 0
nên A= 0,5 - | x - 3,5 | \(\le\) 0,5
GTLN của A là 0,5 khi và chỉ khi x-3,5= 0
=> x= 3,5
5) Tìm x thuộc Q :(x +1)(x-2) < 0
Để (x +1)(x-2) \(\in Q\)
Thì x+1 và x-2 khác dấu
mà ta thấy x+1 > x-2 ( luôn luôn xảy ra)
=> x+1\(\ge\)0 => x= -1
x-2\(\le\) 0 => x= 2
Vậy -1 <x <2
vậy: x \(\in\) 0;1
bài 4:
gọi x. y, z, k lần lượt là số học sinh khối 6, 7, 8,9
theo đề ta có:
\(\dfrac{x}{11}=\dfrac{y}{10}=\dfrac{z}{9}=\dfrac{k}{8}\) và y-k= 22
=> \(\dfrac{x}{11}=\dfrac{y}{10}=\dfrac{z}{9}=\dfrac{k}{8}\)= \(\dfrac{y-k}{10-8}=\dfrac{22}{2}=11\)
=> x= 121
y= 110
z= 99
k= 88
Vậy khối 6, 7, 8, 9 có..............................
Gọi x là số bạn nam trong lớp 7a
Gọi y là số bạn nữ trong lớp 7a
Đk (0<x<65)
Vì trong lớp 7a có 65 bạn nên ta có PT
X+y= 65 (1)
1/3 Số học sinh nam bằng 2/7 số học sinh nữ lên ta có PT
1/3x = 2/7y <=> 1/3x -2/7y=0 (2)
Từ 1 và 2 ta có hệ PT
X+y=65
1/3x -2/7y =0
Giải hệ PT ta được X=30; Y=35
Câu 3:
Gọi số học sinh khối 6;7;8 lần lượt là a,b,c
Theo đề, ta có: \(\dfrac{2}{3}a=\dfrac{1}{4}b=\dfrac{3}{5}c\)
=>40a=15b=36c
=>a/9=b/24=c/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{24}=\dfrac{c}{10}=\dfrac{b-a-c}{24-19}=\dfrac{30}{5}=6\)
=>a=54; b=144; c=60