Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TenAnh1 TenAnh1 A = (-4.36, -5.2) A = (-4.36, -5.2) A = (-4.36, -5.2) B = (11, -5.2) B = (11, -5.2) B = (11, -5.2)
a) Xét hiệu un+1 - un = - 2 - ( - 2) = - .
Vì < nên un+1 - un = - < 0 với mọi n ε N* .
Vậy dãy số đã cho là dãy số giảm.
b) Xét hiệu un+1 - un =
=
Vậy un+1 > un với mọi n ε N* hay dãy số đã cho là dãy số tăng.
c) Các số hạng ban đầu vì có thừa số (-1)n, nên dãy số dãy số không tăng và cũng không giảm.
d) Làm tương tự như câu a) và b) hoặc lập tỉ số (vì un > 0 với mọi n ε N* ) rồi so sánh với 1.
Ta có với mọi n ε N*
Vậy dãy số đã cho là dãy số giảm
a)
\(u_1=10^{1-2.1}=10^{-1};u_2=10^{1-2.2}=10^{-3}\);
\(u_3=10^{1-2.3}=10^{-5}\); \(u_4=10^{1-2.4}=10^{-7}\);
\(u_5=10^{1-2.5}=10^{-9}\).
Xét \(\dfrac{u_n}{u_{n-1}}=\dfrac{10^{1-2n}}{10^{1-2\left(n-1\right)}}=\dfrac{10^{1-2n}}{10^{3-2n}}=10^{-2}=\dfrac{1}{100}\).
Suy ra: \(u_n=\dfrac{1}{100}u_{n-1}\) và dễ thấy \(\left(u_n\right)>0,\forall n\in N^{\circledast}\) nên \(u_n< u_{n-1},\forall n\ge2\).
Vậy \(\left(u_n\right)\) là dãy số tăng.
b) \(u_1=3^1-7=-4\); \(u_2=3^2-7=2\); \(u_3=3^3-7=25\);
\(u_4=3^4-7=74\); \(u_5=3^5-7=236\).
\(u_n-u_{n-1}=3^n-7-\left(3^{n-1}-7\right)=3^n-3^{n-1}=2.3^{n-1}\)\(\left(n\ge2\right)\).
Với \(n\ge2\) thì \(2.3^{n-1}>0\) nên \(u_n>u_{n-1}\).
Vậy \(\left(u_n\right)\) là dãy số tăng.