K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

dùng nhân đa thức với đa thức

2 tháng 11 2017

bạn kai nói đúng rồi đó nha

15 tháng 11 2017

Bài 2.2 - Bài tập bổ sung Sách bài tập - trang 159 - Toán lớp 8 | Học trực tuyến

20 tháng 3 2018

2.

\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )

Tương tự.......................

20 tháng 3 2018

1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)

Lại có: b - a < 0 ( a > b)

ab >0 ( a>0, b > 0)

\(\Rightarrow\dfrac{b-a}{ab}< 0\)

Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)

2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)

Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b

3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)

Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b

14 tháng 5 2018

Trả lời

a^2 + b^2 - 2ab

= ( a^2 - 2ab + b^2 )

= ( a - b )^2 ≥ 0 ( luôn đúng )

Vậy...

14 tháng 5 2018

\(a^2+b^2-2ab=\left(a-b\right)^2\ge\forall a,b\)

4 tháng 11 2019

Ta có: \(-5a^2+4a-2ab-b^2-3=0\)

\(\Leftrightarrow-4a^2-a^2+4a-2ab-b^2-1-2=0\)

\(\Leftrightarrow-\left(4a^2-4a+1\right)-\left(a^2+2ab+b^2\right)-2=0\)

\(\Leftrightarrow-\left(2a-1\right)^2-\left(a+b\right)^2-2=0\)

Mà \(-\left(2a-1\right)^2-\left(a+b\right)^2-2\le-2< 0\)

Nên không có giá trị nào của a và b thỏa mãn \(-5a^2+4a-2ab-b^2-3=0\)

4 tháng 11 2019

\(-5a^2+4a-2ab-b^2-3=\left(-a^2-2ab-b^2\right)-\left(4a^2-4a-1\right)-2\)

\(=-\left(a+b\right)^2-\left(2a-1\right)^2-2\le-0-0-2=-2\Rightarrow\text{đpcm}\)

11 tháng 7 2016

Chứng minh đẳng thức:

1) xét vế trái (a+b)(a-b)=a2-ab+ab-b2 =a2-b2=vế phải

2) xét vt (a+b)(a2-ab+b2) =a3-a2b+ab2+a2b-ab2+b3 =a3+b3=vp

3) (a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3 =a3- b=vp

4) (a+b)2=(a+b)(a+b)=a2+ab+ab+b2 =a2+2ab+b2=vp

5) (a-b)2 =(a-b)(a-b)=a2-ab-ab+b2 =a2-2ab+b2=vp

6) (a+b)=(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b) = a3+2a2b+ab2+a2b+2ab2+b3= a3+3a2b+3ab2+b3=vp

7)(a-b)3=(a-b)(a-b)(a-b)=(a2-2ab+b2)(a-b) = a3-2a2b+ab2-a2b+2ab2-b=a3-3a2b+3ab2-b3=vp

18 tháng 10 2017

I don't know

19 tháng 10 2017

Đề bị thiếu rồi

22 tháng 6 2016

Phiển bạn bổ sung đề ! Ko phải chép lại đề đâu, bạn chỉ cần sửa nội dung thôi , hoặc nếu ko bt cách sửa nội dung thì bạn có thể trả lời xuống dưới này. 

đề là cái j ko thấy mặt mũi cái đề sao bít mà làm!! ~_~ @@

576586787697890780899635654767546

20 tháng 3 2018

a) \(a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b,c)

b)\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

20 tháng 3 2018

Câu a :

Ta có :

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

Dấu = xảy ra khi \(a=b\)

Câu b :

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( đúng )

Dấu = xảy ra khi \(a=b=c\)

1 tháng 9 2019

a b a b a^2 ab ab b^2

diện tích hình vuông ABCD:

(a+b)(a+b)=a.a+a.b+a.b+b.b

(a+b)^2     = a^2+2ab+b^2