K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
5 tháng 11 2023

Ta có:

 \(W_t=\dfrac{1}{2}m\omega^2A^2cos^2\left(\omega t+\varphi_0\right)\\ W_d=\dfrac{1}{2}mv^2=\dfrac{1}{2}m\omega^2A^2sin^2\left(\omega t+\varphi_0\right)\\ \Rightarrow W=W_t+W_d=\dfrac{1}{2}m\omega^2A^2\left[cos^2\left(\omega t+\varphi_0\right)+sin^2\left(\omega t+\varphi_0\right)\right]\\ \Rightarrow W=\dfrac{1}{2}m\omega^2A^2\)

27 tháng 8 2023

Thế năng của vật đạt giá trị lớn khi ở vị trí hai biên và đạt giá trị nhỏ nhất ở vị trí cân bằng khi vật di chuyển từ vị trí biên đến vị trí cân bằng thế năng của vật giảm dần từ giá trị lớn nhất về 0 và ngược lại.

18 tháng 8 2023

Công thức (3.5): \(W_d=\dfrac{1}{2}mw^2A^2sin^2\left(wt+\varphi_0\right)\)

Đồ thị động năng – thời gian cũng có dạng hình sin.

Từ đồ thị ta thấy:

+ Tại thời điểm ban đầu, động năng bằng 0

+ Tại thời điểm \(\dfrac{T}{4}\), động năng cực đại

+ Tại thời điểm \(\dfrac{T}{2}\), động năng bằng 0

+ Tại thời điểm \(\dfrac{3T}{4}\), động năng cực đại

+ Tại thời điểm T, động năng bằng 0.

8 tháng 1 2022

Rb=R12=(R1*R2)/(R1+R2) = 2Ω

I = ξ/Rb+r = 6/1+2 = 2A