Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{49.360}=\sqrt{7^2.6^2.10}=7.6\sqrt{10}=42\sqrt{10}\)
b) \(-\sqrt{500.162}=-\sqrt{\left(2^2.5^2.5\right).\left(2.3^2.3^2\right)}\)
\(=-2.5.3.3\sqrt{5.2}=-90\sqrt{10}\)
c) \(\sqrt{125a^2}=\sqrt{5^2.a^2.5}=5\left|a\right|\sqrt{5}=-5a\sqrt{5}\) (do a <0)
d) \(\frac{1}{3}\sqrt{225a^2}=\frac{1}{3}\sqrt{15^2.a^2}=\frac{15}{3}\left|a\right|=5\left|a\right|\)
a < 0 thì suy ra \(\frac{1}{3}\sqrt{225a^2}=\frac{1}{3}\sqrt{15^2.a^2}=\frac{15}{3}\left|a\right|=5\left|a\right|=-5a\)
a>=0 thì suy ra \(\frac{1}{3}\sqrt{225a^2}=\frac{1}{3}\sqrt{15^2.a^2}=\frac{15}{3}\left|a\right|=5\left|a\right|=5a\)
Bài 1: Đưa thừa số ra ngoài dấu căn:
\(2\sqrt{225a^2}=2.15a=30a\)
Bài 2: Đưa thừa số vào trong dấu căn :
\(x\sqrt{\dfrac{-39}{x}}=\sqrt{x^2.\dfrac{-39}{x}}=\sqrt{-39x}\)
Bài 3: Sắp xếp theo thứ tự tăng dần :
a) \(2\sqrt{3}< 3\sqrt{2}< 2\sqrt{5}< 5\sqrt{2}\)
b) \(4\sqrt{2}< \sqrt{37}< 2\sqrt{15}< 3\sqrt{7}\)
c) \(6\sqrt{\dfrac{1}{3}}< \sqrt{27}< 2\sqrt{28}< 5\sqrt{7}\)
Bài 2:
a: \(=\sqrt{\left(\dfrac{1}{5a}\right)^2}=\dfrac{1}{\left|5a\right|}=\dfrac{-1}{5a}\)
b: \(=\dfrac{1}{3}\cdot15\cdot\left|a\right|=5\left|a\right|\)
a )\(x\sqrt{7}\)
b )\(-2y\sqrt{2}\)
c )\(5x\sqrt{x}\)
d)\(4y^2\sqrt{3}\)
a) \(\sqrt{27x^2}=\sqrt{3.\left(3x\right)^2}=\left|3x\right|.\sqrt{3}=3x\sqrt{3}\left(x>0\right)\)
b) \(\sqrt{8xy^2}=\left|y\right|.2\sqrt{2x}=-2y\sqrt{2x}\left(x\ge0,y\le0\right)\)
1) \(x\sqrt{13}=\sqrt{13x^2}\left(x\ge0\right)\)
2) \(x\sqrt{-15x}=-\left|x\right|\sqrt{15x}=-\sqrt{15x^3}\left(x< 0\right)\)
3) \(x\sqrt{2}=-\left|x\right|\sqrt{2}=-\sqrt{2x^2}\left(x\le0\right)\)
a) \(\sqrt{49.360}=\sqrt{7^2.6^2.10}=7.6\sqrt{10}=42\sqrt{10}\)
b)\(\sqrt{125a^2}=\sqrt{5^2.5.a^2}=5.\left|a\right|\sqrt{5}=-5a\sqrt{5}\) ( vì a<0)
c)\(-\sqrt{500.162}=-\sqrt{10^2.5.9^2.2}=-10.9\sqrt{5.2}=-90\sqrt{10}\)
d) \(\frac{1}{3}\sqrt{225a^2}=\frac{1}{3}\sqrt{15^2.a^2}=\frac{1}{3}.15.\left|a\right|=\frac{15a}{3}\) ( a>0)
a: \(=\sqrt{\left(2-a\right)^2\cdot\dfrac{2a}{a-2}}=\sqrt{2a\left(a-2\right)}\)
b: \(=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{\left(5-x\right)\left(5+x\right)}}\)
\(=\sqrt{\left(x-5\right)\cdot\dfrac{x}{x+5}}\)
c: \(=\sqrt{\left(a-b\right)^2\cdot\dfrac{3a}{\left(b-a\right)\left(b+a\right)}}=\sqrt{\dfrac{3a\left(b-a\right)}{b+a}}\)
a/ \(0,1\sqrt{2.10000=0,1\sqrt{ }2.100^{ }2=0,1\cdot100\sqrt{ }2=10\sqrt{ }2}\)
b/ \(-0,05\sqrt{28800}=-0,05\sqrt{288\cdot100=-0,05\cdot10\sqrt{ }288=6\sqrt{ }2}\)
c/\(\sqrt{7\cdot63}a^2=\sqrt{7\cdot9\cdot7}a^2=21a^2\)
\(\sqrt{72a^{ }2b\sqrt{ }4=\sqrt{ }6\cdot9\left|\right|ab^{ }2=-3\sqrt{ }6ab^{ }2}\)
d) \(\dfrac{1}{3}\sqrt{225a^2}=\dfrac{1}{3}\sqrt{\left(15a\right)^2}=\dfrac{1}{3}\left|15a\right|=\left|5a\right|\)
\(\Rightarrow\left[{}\begin{matrix}a>0\Rightarrow d=5a\\a< 0\Rightarrow d=-5a\end{matrix}\right.\)
Giải:
a) \(\sqrt{49.360}\)
\(=\sqrt{7^2.3^2.2^2.10}\)
\(=7.3.2\sqrt{10}\)
\(=42\sqrt{10}\)
Vậy ...
b) \(-\sqrt{500.162}\)
\(=-\sqrt{10^2.5.9^2.2}\)
\(=-10.9\sqrt{10}\)
\(=-90\sqrt{10}\)
Vậy ...
c) \(\sqrt{125a^2}\)
\(=\sqrt{5^2.5.a^2}\)
\(=\sqrt{5^2.5.\left(-a\right)^2}\)
\(=-5a\sqrt{5}\)
Vậy ...
d) \(\dfrac{1}{3}\sqrt{225.a^2}\)
\(=\dfrac{1}{3}\sqrt{15^2.a^2}\)
\(=\dfrac{1}{3}.15.a^2\)
\(=5a^2\)
Vậy ...