Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(3x+7)(2x+3)-(3x-5)(2x+11) =6x2+9x+14x+21-6x2-33x+10x+55 =(6x2-6x2)+(9x+14x-33x+10x)+(21+55) =76
\(A=\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\)
\(\Leftrightarrow A=6x^2+14x+9x+21-\left(6x^2-10x+33x-55\right)\)
\(\Leftrightarrow A=6x^2+23x+21-\left(6x^2+23x-55\right)\)
\(\Leftrightarrow A=6x^2+23x+21-6x^2-23x+55\)
\(\Leftrightarrow A=76\)
\(B=\left(x+1\right)\left(x^2-x-1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow B=\left(x+1\right)x^2-x\left(x+1\right)-\left(x+1\right)-\left(x-1\right)x^2-\left(x-1\right)x-\left(x-1\right)\)
\(\Leftrightarrow B=x^3+x^2-x^2-x-x-1-x^3+x^2-x^2+x-x+1\)
\(\Leftrightarrow B=\left(x^3-x^3\right)+\left(x^2-x^2+x^2-x^2\right)+\left(x-x-x-x\right)+\left(1-1\right)\)
\(\Leftrightarrow B=-2x\)
1: \(A=\dfrac{15-4+1}{10}+\dfrac{18-8+1}{12}\)
\(=\dfrac{12}{10}+\dfrac{11}{12}\)
\(=\dfrac{6}{5}+\dfrac{11}{12}=\dfrac{72+55}{60}=\dfrac{127}{60}\)
1. \(A=2x^2-5x-5\)
* Tại \(x=-2\) giá trị của biểu thức là :
\(A=2.\left(-2\right)^2-5.\left(-2\right)-5\)
\(A=8-\left(-10\right)-5=13\)
*Tại \(x=\dfrac{1}{2}\)
\(A=2\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}-5\)
\(A=-7\)
Câu 3:
a) \(A=\left(x-3\right)^2+9\ge9,\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)
..........................\(\Leftrightarrow x=3\)
Vậy MIN A = 9 \(\Leftrightarrow x=3\)
P/s: câu b coi lại đề
c) \(\left|x-1\right|+\left(2y-1\right)^4+1\ge1;\forall x,y\)
Dấu "='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy .............................
Câu 5:
Ta có: \(A=\dfrac{x-5}{x-3}=\dfrac{x-3-2}{x-3}=1-\dfrac{2}{x-3}\)
Để A nguyên thì \(2⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do đó:
\(x-3=-2\Rightarrow x=1\)
\(x-3=-1\Rightarrow x=2\)
\(x-3=1\Rightarrow x=4\)
\(x-3=2\Rightarrow x=5\)
Vậy .....................
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)