K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

điều phải chứng minh

5 tháng 10 2015

là Điều phải chứng minh 

26 tháng 3 2016

Điều phải chứng minh !!!!!!!!!!!!!!!!!!!!!!!!!!!!!

30 tháng 6 2016

điều phải chứng minh

30 tháng 6 2016

điều phải chứng minh

12 tháng 1 2016

Điều Xung Mã Vi Sai

 

12 tháng 1 2016

những bài bắt chứng minh thỳ sau khi giải xong hay có câu đấy

4 tháng 6 2018

"đpcm" là gì?

Trả lời:

đpcm là điều phải chứng minh.

chúc bạn học tốt

4 tháng 6 2018

điều phải chứng minh 

20 tháng 11 2017
things must prove
20 tháng 11 2017

the thing must prove

27 tháng 11 2019

ĐPCM hình như là điều phải chứng minh đó bạn ^.^

là "điều phải chứng minh" đó bạn

10 tháng 1 2016

Trong toán học, nguyên lý chuồng bồ câunguyên lý hộp hay nguyên lý ngăn kéo Dirichlet có nội dung là nếu như một số lượng nvật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 3 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác[1].

Người đầu tiên đề xuất ra nguyên lý này được cho là nhà toán học Đức Johann Dirichlet khi ông đề cập tới nó với tên gọi "nguyên lý ngăn kéo" (Schubfachprinzip). Vì vậy, một tên gọi thông dụng khác của nguyên lý chuồng bồ câu chính là "nguyên lý ngăn kéo Dirichlet" hay đôi khi gọi gọn là "nguyên lý Dirichlet" (tên gọi gọn này có thể gây ra nhầm lẫn với nguyên lý Dirichlet về hàm điều hòa). Trong một số ngôn ngữ như tiếng Pháp, tiếng Ý và tiếng Đức, nguyên lý này cũng vẫn được gọi bằng tên "ngăn kéo" chứ không phải "chuồng bồ câu".

Nguyên lý ngăn kéo Dirichlet dược ứng dụng trực tiếp nhất cho các tập hợp hữu hạn (hộp, ngăn kéo, chuồng bồ câu), nhưng nó cũng có thể được áp dụng đối với các tập hợp vô hạn không thể được đặt vào song ánh. Cụ thể trong trường hợp này nguyên lý ngăn kéo có nội dung là: "không tồn tại một đơn ánh trên những tập hợp hữu hạn mà codomain của nó nhỏ hơn tập xác định của nó". Một số định lý của toán học như bổ đề Siegel được xây dựng trên nguyên lý này.

10 tháng 1 2016

Nguyên lý ngăn kéo Dirichlet – Wikipedia tiếng Việt

22 tháng 7 2017

n la so thu tu cua a