Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+2).(x2-2x+4)+(2x-3).(4x2+6x+9)
=(x3+8)+(8x3-27)
=x3+8+8x3-27
=+9x3-19
Câu 2 giống câu 1
a, \(A=x^3y\left(x^4-y^3\right)-x^2y\left(x^5-y^3\right)\)
\(=x^7y-x^3y^4-x^7y+x^2y^3\)
\(=-x^3y^4+x^2y^3\)
\(=-x^2y^3\left(xy+1\right)\)
Thay x = -1 ; y = 2 ta có:
\(-\left(-1\right)^2.2^3\left(\left(-1\right).2+1\right)=-1.8\left(-2+1\right)=-8.-1=8\)
b, \(B=x^3y^3\left(x^4-y^4\right)-x^3y^4\left(x^2-y^3\right)\)
\(=x^7y^3-x^3y^7-x^5y^6+x^3y^7\)
\(=x^7y^3-x^5y^6\)
\(=x^5y^3\left(x^2-y^3\right)\)
Thay x=1 ; y =2 ta có :
\(1^5.2^3\left(1^2-2^3\right)=1.8\left(1-8\right)=8.\left(-7\right)=-56\)
bài 1.
a.\(A=x^2-2xy+y^2+x^2+2xy+y^2=2\left(x^2+y^2\right)\)
b.\(B=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)=4xy\)
c.\(C=4a^2+4ab+b^2-\left(4a^2-4ab+b^2\right)=8ab\)
d.\(D=4x^2-4x+1-2\left(4x^2-12x+9\right)+4=-4x^2+20x-13\)
.bài 2
a.\(A=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)=10x+16;x=-\frac{1}{2}\Rightarrow A=9\)
b.\(B=9x^2+24x+16-x^2+16-10x=8x^2+14x+32\Rightarrow x=-\frac{1}{10}\Rightarrow B=\frac{767}{25}\)
c.\(C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)=6x-12\Rightarrow x=1\Rightarrow C=-6\)
d.\(D=x^2-9+x^2-4x+4-2x^2+8x=4x-5\Rightarrow x=-1\Rightarrow A=-9\)
Trả lời:
Bài 1: Rút gọn biểu thức:
a) A = ( x - y )2 + ( x + y )2
= x2 - 2xy + y2 + x2 + 2xy + y2
= 2x2 + 2y2
b) B = ( x + y )2 - ( x - y )2
= x2 + 2xy + y2 - ( x2 - 2xy + y2 )
= x2 + 2xy + y2 - x2 + 2xy - y2
= 4xy
c) C = ( 2a + b )2 - ( 2a - b )2
= 4a2 + 4ab + b2 - ( 4a2 - 4ab + b2 )
= 4a2 + 4ab + b2 - 4a2 + 4ab - b2
= 8ab
d) D = ( 2x - 1 )2 - 2 ( 2x - 3 )2 + 4
= 4x2 - 4x + 1 - 2 ( 4x2 - 12x + 9 ) + 4
= 4x2 - 4x + 1 - 8x2 + 24x - 18 + 4
= - 4x2 + 20x - 13
Bài 2: Rút gọn rồi tính giá trị biểu thức:
a) A = ( x + 3 )2 + ( x - 3 )( x + 3 ) - 2 ( x + 2 )( x - 4 )
= x2 + 6x + 9 + x2 - 9 - 2 ( x2 - 2x - 8 )
= 2x2 + 6x - 2x2 + 4x + 16
= 10x + 16
Thay x = 1/2 vào A, ta có:
\(A=10.\left(-\frac{1}{2}\right)+16=-5+16=11\)
b) B = ( 3x + 4 )2 - ( x - 4 )( x + 4 ) - 10x
= 9x2 + 24x + 16 - x2 + 16 - 10x
= 8x2 + 14x + 32
Thay x = - 1/10 vào B, ta có:
\(B=8.\left(-\frac{1}{10}\right)^2+14.\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)
c) C = ( x + 1 )2 - ( 2x - 1 )2 + 3 ( x - 2 )( x + 2 )
= x2 + 2x + 1 - 4x2 + 4x - 1 + 3 ( x2 - 4 )
= - 3x2 + 6x + 3x2 - 12
= 6x - 12
Thay x = 1 vào C, ta có:
\(C=6.1-12=-6\)
d) D = ( x - 3 )( x + 3 ) + ( x - 2 )2 - 2x ( x - 4 )
= x2 - 9 + x2 - 4x + 4 - 2x2 + 8x
= 4x - 5
Thay x = - 1 vào D, ta có:
\(D=4.\left(-1\right)-5=-9\)
Bài 1: A = \(\frac{\left(x-1\right)^2}{x^2-x+1}=\frac{x^2-x+1-x}{x^2-x+1}=1-\frac{x}{x^2-x+1}\)
Ta có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\in R\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\end{cases}\Rightarrow A}\ge0\forall x\in R\)
Bài 2: \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow3\left(a^3-a^2b-ab^2+b^3\right)\ge0\)\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng với mọi a; b > 0)
a) A = (x+3)2 + (x-3)(x+3) - 2(x+2)(x - 4)
= (x + 3)(x + 3) + (x - 3)(x + 3) - 2[x(x - 4) + 2(x - 4)]
= x(x + 3) + 3(x + 3) + x(x + 3) - 3(x + 3) - 2[x2 - 4x + 2x - 8]
= x2 + 3x + 3x + 9 + x2 + 3x - 3x - 9 - 2(x2 - 2x - 8)
= x2 + 3x + 3x + 9 +x2 + 3x - 3x - 9 - 2x2 + 4x + 16
= (x2 + x2 - 2x2) + (3x + 3x + 3x - 3x + 4x) + (9 - 9 + 16) = 10x + 16
Thay x = -1/2 vào biểu thức trên ta có : \(10\cdot\left(-\frac{1}{2}\right)+16=-5+16=11\)
b) \(B=\left(3x+4\right)^2-\left(x-4\right)\left(x+4\right)-10x\)
\(B=9x^2+24x+16-x\left(x+4\right)+4\left(x+4\right)-10x\)
\(B=9x^2+24x+16-x^2-4x+4x+16-10x\)
\(B=\left(9x^2-x^2\right)+\left(24x-4x+4x-10x\right)+\left(16+16\right)\)
\(B=8x^2+14x+32\)
Thay x = -1/10 vào biểu thức trên ta có : \(B=8\cdot\left(-\frac{1}{10}\right)^2+14\cdot\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)
c) \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)
\(C=x^2+2x+1-\left(2x-1\right)\left(2x-1\right)+3\left(x^2-4\right)\)
\(C=x^2+2x+1-2x\left(2x-1\right)+1\left(2x-1\right)+3x^2-12\)
\(C=x^2+2x+1-4x^2+2x+2x-1+3x^2-12\)
\(C=\left(x^2-4x^2+3x^2\right)+\left(2x+2x+2x\right)+\left(1-1-12\right)\)
\(C=6x-12\)
Thay x = 1 vào biểu thức ta có : C = 6.1 - 12 = 6 -12 = -6
Còn bài kia làm nốt đi
a) Đặt biểu thức là A
Ta có: \(A=126y^3+x^3-\left(5y\right)^3=126y^3+x-125y^3=x^3+y^3\)
Thay x=-5, y=-3 vào biểu thức A ta có:
\(\left(-5\right)^3+\left(-3\right)^3=-125-27=-152\)
Vậy giá trị biểu thức A là -152 với x=-5, y=-3
b) Đặt biểu thức là B
Ta có: \(B=a^3+b^3-\left(a-b\right)^3=a^3+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)
\(=a^3+b^3-a^3+2a^2b-3ab^2+b^3=2b^3+3a^2b-3ab^2\)
Thay a=-4, b=4 vào biểu thức B ta có:
\(2.4^3+3\left(-4\right)^24-3\left(-4\right)4^2=512\)
Vậy giá trị biểu thức B là 512 với a=-4, b=4
Easy thật :
\(a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)^2\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)^3\)
Thay \(a=-4;b=4\)vào biểu thức , ta được :
\(\left(-4\right)^3+4^3-\left(-4-4\right)^3\)
\(=8^3\)
\(=512\)
a3 + b3 - ( a2 - 2ab + b2 )( a - b )
= a3 + b3 - ( a - b )2( a - b )
= a3 + b3 - ( a - b )3
Thế a = -4 ; b = 4 ta được
(-4)3 + 43 - ( -4 - 4 )3
= -64 + 64 - ( -512 )
= 512