K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

đề thấy có chút thiếu dữ liệu câu đầu ấy

mỗi đội đều chơi 9 trận với 9 đội khác và không có trận hòa

Do đó : x1 + y1 = x2 + y2 = .... = x10 + y10

Ta có : ( x12 + x22 + ... + x102 ) - ( y12 + y22 + ... + y102 )

= ( x12 - y12 ) + ( x22 - y22 ) + ... + ( x102 - y102 )

= 9 ( x1 - y1 + x2 - y2 + ... + x10 - y10 )

= 9 [ ( x1 + x2 + .... + x10 ) - ( y1 + y2 +...+ y10 ) ]

= 9 . 0

= 0

Vậy ....

1. Cho hình bình hành ABCD. Đường thẳng qua C vuông góc với CD cắt đường thẳng qua A vuông góc với BD tại F. Đường thẳng qua B vuông góc với AB cắt đường trung trực của AC tại E. Hai đường thẳng BC và EF cắt nhau tại K. Tính tỉ số \(\frac{KE}{KF}\)2. Cho tam giác ABC có 3 góc nhọn nội tiếp (O). M trung điểm BC, N đối xứng với M qua O. Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B...
Đọc tiếp

1. Cho hình bình hành ABCD. Đường thẳng qua C vuông góc với CD cắt đường thẳng qua A vuông góc với BD tại F. Đường thẳng qua B vuông góc với AB cắt đường trung trực của AC tại E. Hai đường thẳng BC và EF cắt nhau tại K. Tính tỉ số \(\frac{KE}{KF}\)

2. Cho tam giác ABC có 3 góc nhọn nội tiếp (O). M trung điểm BC, N đối xứng với M qua O. Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B vuông góc với BC tại D. Kẻ đường kính AE. CMR:

a) BA.BC = 2BD.BE

b) CD đi qua trung điểm của đường cao AH của ttam giác ABC.

3. Có 10 vận động viên tham gia đấu quần vợt. Cứ 2 người trong họ chơi với nhau đúng 1 trận. Người thứ nhất thắng x1 trận và thua y1 trận; người thứ hai thắng x2 trận và thua y2 trận; ...; người thứ mười thắng x10 trận và thua y10 trận. Biết trong 1 trận đấu quần vợt ko có kết quả hòa. CMR: \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+...+y_{10}^2\)

1
26 tháng 3 2017

Chỉ hướng dẫn câu đại thôi nhé

Theo đề bài thì ta có hai giả thuyết sau

\(\hept{\begin{cases}x_1+y_1=x_2+y_2=...=x_{10}+y_{10}=10\\x_1+x_2+...+x_{10}=y_1+y_2+...+y_{10}\end{cases}}\)

Theo đề bài thì

\(x^2_1+x^2_2+...+x^2_{10}=y_1^2+y^2_2+...+y^2_{10}\)

\(\Leftrightarrow\left(x^2_1-y^2_1\right)+\left(x^2_2-y^2_2\right)+...+\left(x^2_{10}-y^2_{10}\right)=0\)

\(\Leftrightarrow10\left(x_1-y_1\right)+10\left(x_2-y_2\right)+...+\left(x_{10}-y_{10}\right)=0\)

\(\Leftrightarrow x_1+x_2+...+x_{10}-y_1-y_2-...-y_{10}=0\)ĐPCM 

2 tháng 6 2020

Một người đều chơi 9 trận với 9 người người khác không có trận hòa. 

Do đó: \(x_1+y_1=x_2+y_2=....=x_{10}+y_{10}=9\)

Mà tổng số trận thắng bằng tổng số trận thua do đó:

\(x_1+x_2+...+x_{10}=y_1+y_2+y_3+...+y_{10}\)

Ta có: \(\left(x_1^2+x_2^2+...+x_{10}^2\right)-\left(y_1^2+y_2^2+...+y_{10}^2\right)\)

\(=\left(x_1^2-y_1^2\right)+\left(x_2^2-y_2^2\right)+.....+\left(x_{10}^2-y_{10}^2\right)\)

\(=9\left(x_1-y_1\right)+9\left(x_2-y_2\right)+....+9\left(x_{10}-y_{10}\right)\)

\(=9\left(x_1-y_1+x_2-y_2+....+x_{10}-y_{10}\right)\)

\(=9\left[\left(x_1+x_2+...+x_{10}\right)-\left(y_1+y_2+y_3+....+y_{10}\right)\right]=0\)

Vậy \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+....+y_{10}^2\)

Đây là cách làm của thầy mk:

Nối đường thẳng AB ta được  pt có dạng  :y = ax + b

Vì B(x2;y2) và A(x1;y1) Thuộc AB 

=> y2-y1 = ax2+b-(ax1-b) = ax2+b-ax1-b

Hay y2-y1 = a(x2-x1) (a khác 0,vì nếu a = 0 thì y2=y1)

Ta lại có: y-y1=ax+b-ax- b = a(x-x1)

=>\(\frac{y-y_1}{y_2-y_1}=\frac{a\left(x-x_1\right)}{a\left(x_2-x_1\right)}=\frac{x-x_1}{x_2-x_1}\)      (vì a khác 0)

Vậy....

Còn đây là cách hiểu của mk:

Ta có A(x1;y1) => Hàm số A có dạng y1=ax+b

B(x2;y2) => Hàm số B có dạng y2=ax2+b

=> y2-y1 = ax2 + b - ax1 - b = ax2-ax1

hay y2-y1 = a(x2-x1)

Từ đề ta lại có  : 

y -y1 = ax + b - ax1-b = ax - ax1 

Hay y-y1 = a(x-x1)

 =>\(\frac{y-y_1}{y_2-y_1}=\frac{a\left(x-x_1\right)}{a\left(x_2-x_1\right)}=\frac{x-x_1}{x_2-x_1}\)      

Ê chỗ cách làm của thầy mk là nối đoạn thẳng nhé.

25 tháng 5 2018

Mỗi đội đấu với 9 đội còn lại, số trận là 9.10/2=45 trận ( do mỗi trận được tính 2 lần).

Gọi số trận thắng thua là x, x≤45, x là số tự nhiên, tổng số điểm thu được là 3x.

Số trận hòa là 45-x, tổng số điểm thu được là 2.(45-x)

Vậy có 3x+2.(45-x)=126 → x=36

21 tháng 4 2018
https://i.imgur.com/0mWaEdv.jpg
21 tháng 4 2018

Hình như bn chưa giải xong thì phải

21 tháng 3 2017

Câu c làm tương tự, mẫu số nhân ra và nhóm lại theo dạng: x1+x2 và x1.x2

21 tháng 3 2017

TOÁN HỌC

Toán lớp 2

Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 92.luyện tập (trang 96 sgk)

Bài 1: Số ?,Bài 2: Tính (theo mẫu),Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ? Bài 4: Viết số thích hợp vào ô trống (theo mẫu),Bài 5: Viết số thích hợp vào ô trống (theo mẫu):

  • Lý thuyết, bài 1, bài 2, bài 3 tiết 93.bảng nhân 3 (trang 97sgk)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 94.luyện tập (trang 98 sgk)
  • Lý thuyết, bài 1, bài 2, bài 3 tiết 95. bảng nhân 4 (trang 99 sgk)
  • Bài 1, bài 2, bài 3, bài 4 tiết 96.luyện tập (trang 100 sgk)

Xem thêm: CHƯƠNG V: PHÉP NHÂN VÀ PHÉP CHIA

Bài 1: Số ?

Bài 2: Tính (theo mẫu)

2cm x 3 = 6cm                          2kg x 4 =

2cm x 5 =                                2kg x 6 = 

2dm x 8 =                                2kg x 9 =

Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ?

Bài 4: Viết số thích hợp vào ô trống (theo mẫu):

Bài 5: Viết số thích hợp vào ô trống (theo mẫu):

Bài giải:

Bài 1:

Bài 2:

2cm x 3 = 6cm                                2kg x 4 = 8kg

2cm x 5 = 10cm                               2kg x 6 = 12kg 

2dm x 8 = 16cm                               2kg x 9 = 18kg

Bài 3: 

Số bánh xe của 78 xe đạp là:

2 x 8 = 16 (bánh xe)

Đáp số: 16 bánh xe.

Bài 4: Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống còn lại là: 12, 18, 20, 14, 10, 16, 4.

Bài 5:

Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống các số là: 10, 14, 18, 20, 4.

Bài viết liên quan

Các bài khác cùng chuyên mục

  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180,181 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 4 trang 177, 178 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4 trang 178,179 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 181 sgk toán lớp 2 (12/01)



Xem thêm tại: http://loigiaihay.com/bai-1-bai-2-bai-3-bai-4-bai-5-tiet-92luyen-tap-c114a15865.html#ixzz4bgVSXCQi

28 tháng 1 2019

Bạn vào câu hỏi tương tự ý , có 1 bạn tên giống hệt bạn từng trả lời rồi đấy !

28 tháng 1 2019

Bạn tham khảo nha ! Lick : https://olm.vn/hoi-dap/detail/185482794083.html

Câu hỏi của Kudo - Toán lớp 9 - Học toán với OnlineMath

Chúc bạn học tốt !

31 tháng 7 2018

bài này hình như có trong đề olympic Toán Trung Quốc 2003 

Sử dụng Cauchy-Schwarz ta có:

\(\left(ay_1+by_2+cy_3+dy_4\right)^2\le\left(ab+cd\right)\left[\frac{\left(ay_1+by_2\right)^2}{ab}+\frac{\left(cy_3+dy_4\right)^2}{cd}\right]\)\(=\frac{\left(ay_1+by_2\right)^2}{ab}+\frac{\left(cy_3+dy_4\right)^2}{cd}\)

\(=\frac{a}{b}y_1^2+\frac{b}{a}y_2^2+\frac{c}{d}y_3^2+\frac{d}{c}y_4^2+2y_1y_2+2y_3y_4\)

\(\left(ax_4+bx_3+cx_2+dx_1\right)^2 \le\left(ab+cd\right)\left[\frac{\left(ax_4+bx_3\right)^2}{ab}+\frac{\left(cx_2+dx_1\right)^2}{cd}\right]\)\(=\frac{\left(ax_4+bx_3\right)^2}{ab}+\frac{\left(cx_2+dx_1\right)^2}{cd}\)

\(=\frac{a}{b}x_4^2+\frac{b}{a}x_3^2+\frac{c}{d}x_2^2+\frac{d}{c}x_1^2+2x_1x_2+2x_3x_4\)

Đặt:  \(P=\left(ay_1+by_2+cy_3+dy_4\right)^2+\left(ax_4+bx_3+cx_2+dx_1\right)^2-2\left(\frac{a^2+b^2}{ab}+\frac{c^2+d^2}{cd}\right)\)

Từ các BĐT trên ta có:

\(P\le\frac{a}{b}y_1^2+\frac{b}{a}y_2^2+\frac{c}{d}y_3^2+\frac{d}{c}y_4^2+2y_1y_2+2y_3y_4+\frac{a}{b}x_4^2+\frac{b}{a}x_3^2+\frac{c}{d}x_2^2+\frac{d}{c}x_1^2+2x_1x_2+2x_3x_4-2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{c}\right)\)

\(=-\left(\frac{a}{b}x_1^2+\frac{b}{a}x_2^2\right)-\left(\frac{c}{d}x_3^2+\frac{d}{c}x_4^2\right)-\left(\frac{a}{b}y_4^2+\frac{b}{a}y_3^2\right)-\left(\frac{c}{d}y_2^2+\frac{d}{c}y_1^2\right)+2x_1x_2+2x_3x_4+2y_1y_2+2y_3y_4\)

\(\le-2x_1x_2-2x_3x_4-2y_4y_3-2y_2y_1+2x_1x_2+2x_3x_4+2y_1y_2+2y_3y_4=0\)

=> đpcm

9 tháng 8 2018

chuẩn nè, hôm trc thầy mk chữa, mk thấy bài này cx có ở trg đó, tks bạn nhiều nhé <3