Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do gia tốc: \(a=-\omega^2 x\) , nên gia tốc là hàm bậc nhất với li độ, và \(-A \leq x \leq A\) nên đồ thị gia tốc, li độ có dạng đoạn thẳng.
Đáp án C
+ Đường biểu diễn sự biến thiên của gia tốc theo li độ có dạng một elip.
Đáp án A
+ Đồ thị biểu diễn sự biến thiên của gia tốc theo li độ có dạng là một đoạn thẳng.
Chọn đáp án D
Từ công thức
x 2 + v 2 ω 2 = A 2 ⇒ v 2 = − ω 2 x 2 + ω 2 A 2 ⇒
Đồ thị v 2 theo x là một phần đường parabol − A ≤ x ≤ A
Đáp án: C
x và v vuông pha nhau nên đồ thị biểu diễn v theo x là Đường elip.
Đáp án B
+ Đồ thị biểu diễn sự biến thiên của vận tốc theo li độ trong dao động điều hòa có dạn là một elip.
Đáp án C
+ Đồ thị biểu diễn sự biến thiên của gia tốc theo li độ của chất điểm dao động điều hòa có dạng là một đoạn thẳng.
Đáp án C
+ Đồ thị biểu diễn sự biến thiên của gia tốc theo li độ của chất điểm dao động điều hòa có dạng là một đoạn thẳng.
Từ công thức độc lập, ta có: \(A^2 = x^2+\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\), đây là phương trình của đường Elip.
câu A