K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

i: Độ lớn của trận động đất là;

\(M=log\left(\dfrac{A}{A_0}\right)=log\left(\dfrac{10^{5.1}\cdot A_0}{A_0}\right)=5,1\)(richter)

ii: Độ lớn của trận động đất là:

\(M=log\left(\dfrac{A}{A_0}\right)=log\left(\dfrac{65\cdot10^3\cdot A_0}{A_0}\right)=log\left(65000\right)\simeq4,81\)(richter)

b: \(A_N=3\cdot A_P\)

\(M_N=log\left(\dfrac{A_N}{A_0}\right);M_P=log\left(\dfrac{A_P}{A_0}\right)\)

\(M_N-M_P=log\left(\dfrac{A_N}{A_0}\right)-log\left(\dfrac{A_P}{A_0}\right)\)

\(=log\left(\dfrac{A_N}{A_P}\right)=log3\simeq0,48\)

=>Trận động đất ở địa điểm N lớn hơn 0,48 độ richter

a: Khi \(A=10^{3.5}\mu m\) thì M=3,5

Khi \(A=100000\mu m\) thì M=5

Khi \(A=100\cdot10^{4.3}=10^{6.3}\mu m\) thì M=6,3

b: Nó phải thỏa mãn hệ thức \(10^M=65000\)

22 tháng 9 2023

a) Tính xấp xỉ năng lượng giải toả tại tâm địa chấn ở 5 độ Richter:

Thay M = 5 vào công thức, ta có:

\(logE\approx11,4+1,5.5\approx18,9\\ \Rightarrow E\approx10^{18,9}\)

b) Tính tỷ lệ năng lượng giải toả tại tâm địa chấn ở 8 độ Richter so với tại tâm địa chấn ở 5 độ Richter:

\(logE\approx11,4+1,5.8\approx23,4\\ \Rightarrow E\approx10^{23,4}\)

`=>` Gấp khoảng 31623 lần

Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A.\cos \left( {\omega t + \varphi } \right),\;\)trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động.Xét hai dao động điều hòa có phương trình:         \({x_1}\left(...
Đọc tiếp

Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A.\cos \left( {\omega t + \varphi } \right),\;\)trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động.

Xét hai dao động điều hòa có phương trình:

         \({x_1}\left( t \right) = 2.\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right)\left( {cm} \right)\)

          \({x_2}\left( t \right) = 2.\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\left( {cm} \right)\)

Tìm dao động tổng hợp \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right)\) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right) = 2\left[ {\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + \cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)} \right]\)

          \(2\left[ {\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} + \frac{\pi }{3}t - \frac{\pi }{3}}}{2}} \right).\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} - \frac{\pi }{3}t + \frac{\pi }{3}}}{2}} \right)} \right] = 2\left[2. {\cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right).\cos \frac{\pi }{4}} \right] = 2\sqrt 2 \cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\)

Vậy biên độ là \(2\sqrt 2 \), pha ban đầu \( - \frac{\pi }{{12}}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có

 \(\begin{array}{l}t = 0 \Rightarrow \omega t = 0\\t = \frac{T}{4} \Rightarrow \omega t = \omega .\frac{{\frac{{2\pi }}{\omega }}}{4} = \frac{\pi }{2}\\t = \frac{T}{2} \Rightarrow \omega t = \omega .\frac{{\frac{{2\pi }}{\omega }}}{2} = \pi \\t = \frac{{3T}}{4} \Rightarrow \omega t = \omega .\frac{{3.\frac{{2\pi }}{\omega }}}{4} = \frac{{3\pi }}{2}\\t = T \Rightarrow \omega t = \omega .\frac{{2\pi }}{\omega } = 2\pi \end{array}\)

a)     \(A = 3cm,\varphi  = 0\)

+) Với t=0 thì \(x = 3\cos \left( {\omega .0 + 0} \right) = 3\)

+) Với \(t = \frac{T}{4}\)thì \(x = 3\cos \left( {\frac{\pi }{2} + 0} \right) = 0\)

+) Với \(t = \frac{T}{2}\)thì \(x = 3\cos \left( {\pi  + 0} \right) =  - 3\)

+)Với \(t = \frac{{3T}}{4}\)thì \(x = 3\cos \left( {\frac{{3\pi }}{2} + 0} \right) = 0\)

+Với \(t = T\)thì \(x = 3\cos \left( {2\pi  + 0} \right) = 3\)

b)     \(A = 3cm,\varphi  =  - \frac{\pi }{2}\)

+) Với t=0 thì \(x = 3\cos \left( {0 - \frac{\pi }{2}} \right) = 0\)

+) Với \(t = \frac{T}{4}\)thì \(x = 3\cos \left( {\frac{\pi }{2} - \frac{\pi }{2}} \right) = 3\)

+) Với \(t = \frac{T}{2}\)thì \(x = 3\cos \left( {\pi  - \frac{\pi }{2}} \right) = 0\)

+)Với \(t = \frac{{3T}}{4}\)thì \(x = 3\cos \left( {\frac{{3\pi }}{2} - \frac{\pi }{2}} \right) = 3\)

+Với \(t = T\)thì \(x = 3\cos \left( {2\pi  - \frac{\pi }{2}} \right) = 0\)

c)     \(A = 3cm,\varphi  = \frac{\pi }{2}\)

+) Với t=0 thì \(x = 3\cos \left( {0 + \frac{\pi }{2}} \right) = 0\)

+) Với \(t = \frac{T}{4}\)thì \(x = 3\cos \left( {\frac{\pi }{2} + \frac{\pi }{2}} \right) = 3\)

+) Với \(t = \frac{T}{2}\)thì \(x = 3\cos \left( {\pi  + \frac{\pi }{2}} \right) = 0\)

+)Với \(t = \frac{{3T}}{4}\)thì \(x = 3\cos \left( {\frac{{3\pi }}{2} + \frac{\pi }{2}} \right) = 3\)

+Với \(t = T\)thì \(x = 3\cos \left( {2\pi  + \frac{\pi }{2}} \right) = 0\)

Trong vật lí, ta biết rằng phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A\cos (\omega t + \varphi )\), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0), \(\omega t + \varphi \) là pha dao động tại thời điểm t và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động. Dao động...
Đọc tiếp

Trong vật lí, ta biết rằng phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A\cos (\omega t + \varphi )\), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0), \(\omega t + \varphi \) là pha dao động tại thời điểm t và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động. Dao động điều hòa này có chu kỳ \(T = \frac{{2\pi }}{\omega }\) (tức là khoảng thời gian để vật thực hiện một dao động toàn phần).

Giả sử một vật dao động điều hòa theo phương trình \(x\left( t \right) =  - 5\cos 4\pi t\) (cm).

a) Hãy xác định biên độ và pha ban đầu của dao động.

b) Tính pha của dao động tại thời điểm \(t = 2\) (giây). Hỏi trong khoảng thời gian 2 giây, vật thực hiện được bao nhiêu dao động toàn phần?

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Biên độ dao động \(A =  - 5\); Pha ban đầu của dao động: \(\varphi  = 0\)

b) Pha dao động tại thời điểm \(t = 2\) à \(\omega t + \varphi  = 4\pi .2 = 8\pi \)

Chu kỳ \(T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{4\pi }} = 0,2\)

Trong khoảng thời gian 2 giây, số dao động toàn phần vật thực hiện được là: \(\frac{2}{{0,2}} = 10\) (dao động)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Đổi \(200km/h = \frac{{500}}{9}m/s\)

Mô hình hoá như hình vẽ, với \(OA\) là quãng đường máy bay bay được sau 2 giây, \(OH\) là độ cao của máy bay so với mặt đấy khi máy bay bay được sau 2 giây, độ lớn của góc \(\widehat {AOH}\) chỉ số đo góc giữa máy bay với mặt đất.

Sau 2 giây máy bay bay được quãng đường là: \(\frac{{500}}{9}.2 = \frac{{1000}}{9}\left( m \right)\)

Vì tam giác \(OAH\) vuông tại \(H\) nên ta có:

\(AH = OA.\sin \widehat {AOH} = \frac{{1000}}{9}.\sin {20^ \circ } \approx 38,0\left( m \right)\)

Vậy độ cao của máy bay so với mặt đất là 38 mét sau khi máy bay rời khỏi mặt đất 2 giây.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Hoành độ của \({A_0}\) là \(\frac{\pi }{6}\)

Hoành độ của \({B_0}\) là \(\frac{{5\pi }}{6}\)

b)     Hoành độ của \({A_1}\) là \(\frac{{13\pi }}{6}\)

Hoành độ của \({B_1}\) là \(\frac{{17\pi }}{6}\)