Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường cao của tam giác đều cạnh a là \(h=\frac{a\sqrt{3}}{2}\Rightarrow\frac{a\sqrt{3}}{2}=2\sqrt{3}\Rightarrow a=4\)
Cạnh tam giác ddeuf là 4
Gọi a là độ dài cạnh của tam giác ABC
+ Ta có : \(S_{AMB}+S_{BMC}+S_{AMC}=S_{ABC}\)
\(\Rightarrow\frac{1}{2}\cdot x\cdot a+\frac{1}{2}\cdot y\cdot a+\frac{1}{2}\cdot z\cdot a=\frac{1}{2}\cdot a\cdot h\)
\(\Rightarrow\frac{1}{2}a\left(x+y+z\right)=\frac{1}{2}a\cdot h\)
\(\Rightarrow x+y+z=h\) ( do \(\frac{1}{2}a\ne0\) )
+ \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{3}h^2\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
<=> M là giao điểm 3 đg phân giác của tam giác ABC
Đặt \(\frac{AB}{BC}=\frac{3}{5}=x\Rightarrow AB=3x;BC=5x\)
Tam giác ABC vuông tại A, theo py ta go:
\(AB^2+AC^2=BC^2\Rightarrow9x^2+144=25x^2\Rightarrow16x^2=144\Leftrightarrow x^2=9\)
=> X = 3 ; AB = 3x = 3.3=9 ; BC= 5x = 5.3 = 15
TAm giac ABC vuông tại A theo hệ thức lượng
AH.BC = AB.AC => AH= (AB.AC)/BC = (9.12)/15 = 7,2cm
AB^2 = BC . BH => BH = AB^2 /BC = 9^2/15 = 5,4
=> HC = BC - HB = 15 - 5,4 = 9,6cm
VẬY AH = 7,2 ; BH = 5,4;CH = 9,6
Giả sử \(\Delta ABC\)đều ngoại tiếp đường tròn (I), khi đó ta cần tính BC (hoặc AB, AC đều được)
Kẻ đường cao AH của \(\Delta ABC\). Nối B với I.
Ta ngay lập tức có BI là tia phân giác của \(\widehat{ABC}\)(vì I là tâm đường tròn nội tiếp \(\Delta ABC\))
Mà \(\widehat{ABC}=60^0\)(do \(\Delta ABC\)đều) \(\Rightarrow\widehat{IBH}=\frac{60^0}{2}=30^0\)
\(\Delta IBH\)vuông tại H \(\Rightarrow BH=IH.\cot\widehat{IBH}=r.\cot30^0=r\sqrt{3}\)
Mặt khác \(\Delta ABC\)đều có đường cao AH \(\Rightarrow\)AH cũng là trung tuyến \(\Rightarrow\)H là trung điểm BC
\(\Rightarrow BC=2BH=2r\sqrt{3}\)\(\Rightarrow\)Chọn ý thứ ba.
Gọi a là cạnh tam giác đều, h là đường cao
Ta có \(h=\frac{a\sqrt{3}}{2}\Rightarrow a=\frac{2\times h}{\sqrt{3}}=\frac{2\times\sqrt{3}}{\sqrt{3}}=2\)
Bạn có thể giải thích thêm đc kh