Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E I
a, Áp dụng định lý Pytago vào tam giác vuông ABC có:
AB2 + AC2 = BC2
92 + AC2 = 152
81 + AC2 = 225
AC2 = 225 - 81
AC2 = 144
AC = 12 (cm)
Xét tam giác ABC có: AB < AC < BC.
nên góc ACB < ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )
b,do A là trung điểm BD (gt)
nên AB=DB
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C
c,...
Xét \(\Delta ABC\)cân tại \(A\left(gt\right):\)
\(\Rightarrow AB=AC\)
Xét \(\Delta ABD\)và \(\Delta ACD,:\)
\(\widehat{BAD}=\widehat{CAD}\left(AD:tpg\widehat{BAC}\right)\)
\(AB=AC\left(cmt\right)\)
\(AD\)chung
\(\Leftrightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
\(+,\Rightarrow BD=CD\)( 2 cạnh t/ứ)
\(\Rightarrow D\)là trung điểm của \(BC\)
\(\Rightarrow BD=CD=\frac{BC}{2}=\frac{14}{2}=7\left(cm\right)\)
\(+,\Rightarrow\widehat{BDA}=\widehat{CDA}\)( 2 góc t/ứ)
Mà \(\widehat{BDA}+\widehat{CDA}=180^0\)
\(\Rightarrow2\widehat{BDA}=180^0\Leftrightarrow\widehat{BDA}=90^0\)
\(\Rightarrow\Delta ABD\perp\)tại \(D\)
\(\Rightarrow AD^2+BD^2=AB^2\left(Py-ta-go\right)\)
\(\Rightarrow15^2+7^2=AB^2\)
\(\Rightarrow AB^2=225+49\)
\(\Rightarrow AB^2=274\)
\(\Rightarrow AB=\sqrt{274}cm\)
chúc bạn học tốt
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
ta có bc ab nhân ab +ac nhân ac
lấy kết quả bấm căn bật 2
ta có: tam giác ABC vuong tại A
áp dụng định lí py-ta-go có
\(BC^2=AB^2+AC^2=10,5^2+14^2=110,25+196=306,25\)
\(BC=\sqrt{306,25}=17,5\)(cm)