K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

tick tui 2 cái cho đủ 200

13 tháng 12 2015

\(\sqrt{28n^2+1}=k\)

\(A=2k+2=4\left(\frac{k+1}{2}\right)\)

\(k^2=28n^2+1\)

\(k^2-1=28n^2\)

\(\frac{k^2-1}{28}=n^2\)

Suy ra\(k^2-1\)chia hết cho 7 vì tử nguyên mẫu nguyên mà thương cũng nguyên nên tử chia hết cho mẫu mà 28 chia hết cho 7

\(k^2\equiv1\left(mod7\right)\)

\(k\equiv1\)(mod7)

k-1 chia hết cho 7

Có \(n^2=\frac{k^2-1}{28}=\left(\frac{k-1}{14}\right)\left(\frac{k+1}{2}\right)\)

2 số trên nguyên tố cùng nhau

mà tích là số chính phương nên 2 số trên đều là số chính phương

(k+1)/2 chính phương

\(A=4\left(\frac{k+1}{2}\right)\)tích 2 số cp nên a cp

 

13 tháng 6 2021

Bài này là đề tuyển sinh vào 10 của hà nội năm 2012 nếu mình không nhớ nhầm.

Bạn tìm trên mạng nhé.

13 tháng 6 2021

Không thấy bạn ơi

27 tháng 7 2016

Do  \(n\in N^{\text{*}}\)  \(\left(o\right)\) nên ta dễ dàng suy ra  \(2+2\sqrt{28n^2+1}\in Z^+\)

Do đó,  \(2\sqrt{28n^2+1}\in Z^+\)  dẫn đến  \(\sqrt{28n^2+1}\in Q\)  

Lại có:  \(28n^2+1\)  luôn là một số nguyên dương (do  \(\left(o\right)\))   nên   \(\sqrt{28n^2+1}\in Z^+\)

hay nói cách khác, ta đặt  \(\sqrt{28n^2+1}=m\)  (với  \(m\in Z^+\)  )

\(\Rightarrow\)  \(28n^2+1=m^2\)   \(\left(\alpha\right)\)

\(\Rightarrow\)    \(m^2-1=28n^2\)  chia hết cho  \(4\)

Suy ra  \(m^2\text{ ≡ }1\)    \(\left(\text{mod 4}\right)\)  

Hay \(m\) phải là một số lẻ có dạng \(m=2k+1\)  \(\left(k\in Z^+\right)\)

Từ  \(\left(\alpha\right)\)  suy ra  \(28n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\)

nên  \(7n^2=k\left(k+1\right)\)

Theo đó,  ta có:  \(\orbr{\begin{cases}k\\k+1\end{cases}\text{chia hết cho 7}}\)  

Xét hai trường hợp sau:

\(\text{Trường hợp 1}:\)\(k=7q\) \(\left(q\in Z^+\right)\)

Suy ra   \(7n^2=7q\left(7q+1\right)\)

\(\Rightarrow\)  \(n^2=q\left(7q+1\right)\)  \(\left(\beta\right)\)

Mặt khác, vì  \(\left(q,7q+1\right)=1\)  nên  từ  \(\left(\beta\right)\)  suy ra  \(\hept{\begin{cases}q=a^2\\7q+1=b^2\end{cases}\Rightarrow}\)  \(7a^2+1=b^2\)  \(\left(\gamma\right)\)

Tóm tại tất cả điều trên, ta có:

\(A=2+2\sqrt{28n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.7q=4+28q\)

Khi đó,  \(A=4+28a^2=4\left(7a^2+1\right)=4b^2\)  (do  \(\left(\gamma\right)\)  )

Vậy,  \(A\)  là số chính phương với tất cả các điều kiện nêu trên

\(\text{Trường hợp 2:}\)\(k+1=7q\)

Tương tự

27 tháng 7 2016

cảm ơn bn

30 tháng 7 2018

\(3a^2+a=4a^2-b\)

\(\Leftrightarrow a+b=4a^2-3a^2\)

\(\Leftrightarrow a+b=a^2\)là số chính phương

30 tháng 7 2018

GIÚP MK VỚI

PLS

.....:>>>>>

7 tháng 9 2020

\(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\)

\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)=6c^2+2bc+3bc+b^2\)

\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)-6c^2-2bc-3bc=b^2\)

\(\Leftrightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=b^2\) ( 1 )

Dễ thấy \(a^2c^2+2ac-6c⋮c\) ( 2 )

Gọi d là ƯC của c và \(a^2c^2+2ac-6c-5b+1\) , ta có :

\(\orbr{\begin{cases}c⋮d\\a^2c^2+2ac-6c-5b+1⋮d\end{cases}}\Rightarrow c-a^2c^2+2ac-6c-5b+1⋮d\) ( 3 )

Từ ( 2 ) và ( 3 ) => 1 - 5b chia hết cho d

Đặt c = kd ; a2c2 + 2ac - 6c - 5b + 1 = td  ( \(k;t\in Z\))

\(\Rightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=kd.td=ktd^2\) ( 4 )

Từ ( 1 ) và ( 4 ) => b2 = ktd2

\(\Rightarrow b⋮d\Rightarrow5b⋮d\). Mà 1 - 5b chia hết cho d

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> Đpcm

7 tháng 9 2020

Sửa lại một tí

Chỗ ( 2 ) chỉnh dấu lại :)

( 3 ) \(c-a^2c^2-2ac+6c+5b-1⋮d\)

Từ ( 2 ) và ( 3 ) => 5b - 1 chia hết cho d

Từ ( 1 ) và ( 4 ) ... => 5b chia hết cho d

=> 1 chia hết cho d => d = 1

=> Đpcm

1 tháng 2 2020

Please help me!

3 tháng 9 2016

Bạn đăng từng bài thôi :)

3 tháng 9 2016

em cx ms lm xong bài kia =))