Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(m+1)x+2y=m-1 (m+1)x-2y=m-1 (1)
<=>
2mx-yx-y=m2+2m 2.m^2.x-2y=2m^2+4m (2)
(2)-(1) ta được
(2.m^2-m-1)x=2.m^2+3m+1
<=>x=(2.m^2+3m+1)/(2.m^2-m-1)
<=>x=1 + 4m+2/2.m^2-m-1
<=>x=1+ 2m+1/(m-1)(m+1/2) (3)
từ (3) ta đã thấy điều kiện của hệ số m đã cho khác 1
và điều kiện để hệ có nghiệm duy nhất là m khác 1 ; m khác -1/2
với các điều kiện đó từ (3) => x=1+ 2/m-1 (#)
thay (#) vào (1) ta được m+1+ 2(m+1)/m-1 -2y=m-1
=>y = 1+ (m+1)/m-1 =2 + 2/m-1 (##)
từ (#) và (##) ta => x; y là nghiệm nguyên duy nhất
m-1 thuộc Ư(2)=+-1;+-2
=>m=-1;0;2;3
HOK TỐT nhé
\(\left\{{}\begin{matrix}\left(m+1\right)x+2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)x+2y=m-1\\2m^2x-2y=2m^2+4m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\left(2m^2+m+1\right)=2m^2+5m-1\\y=m^2x-m^2-2m\left(1\right)\end{matrix}\right.\)
Để hệ phương trình đã chi có nghiệm duy nhất buộc phương trình (1) có nghiệm duy nhất buộc \(2m^2+m+1\ne0\) (luôn đúng với mọi m)
Do đó hệ phương trình đã cho luôn có nghiệm duy nhất là \(\left(\dfrac{2m^2+5m-1}{2m^2+m+1};\dfrac{-4m^2-2m}{2m^2+m+1}\right)\)
Đến đây thì cho x nguyên, y nguyên rồi giải tìm m
Câu 1 :
- Để hệ phương trình có nghiệm duy nhất thì : \(\frac{3}{m}\ne-\frac{m}{1}\left(m\ne0\right)\)
=> \(m^2\ne-3\) ( luôn đúng với mọi m )
Câu 2 :
Ta có hệ : \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3\left(3m+2-2y\right)-y=2m-1\\x=3m+2-2y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}9m+6-6y-y=2m-1\\x=3m+2-2y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=\frac{2m-1-6-9m}{-7}=\frac{-7m-7}{-7}=m+1\\x=3m+2-2y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=m+1\\x=3m+2-2m-2=m\end{matrix}\right.\)
- Ta có : \(x^2+y^2=10\)
=> \(m^2+2m+1+m^2=10\)
=> \(2m^2+2m-9=0\)
=> \(\left(m\sqrt{2}\right)^2+\frac{2m\sqrt{2}.1}{\sqrt{2}}+\frac{1}{2}-\frac{19}{2}=0\)
=> \(\left(m\sqrt{2}+\frac{1}{\sqrt{2}}\right)^2=\frac{19}{2}\)
=> \(\left[{}\begin{matrix}m\sqrt{2}+\frac{1}{\sqrt{2}}=\sqrt{\frac{19}{2}}\\m\sqrt{2}+\frac{1}{\sqrt{2}}=-\sqrt{\frac{19}{2}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}m=\frac{\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\\m=\frac{-\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\end{matrix}\right.\)
Vậy m thỏa mãn điều kiện trên với \(\left[{}\begin{matrix}m=\frac{\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\\m=\frac{-\sqrt{\frac{19}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\end{matrix}\right.\)