Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2-12x+a-13=\left(2x\right)^2-2.2x.3+9-9+a-13=\left(2x-3\right)^2+a-22\)
Để 4x^2 .... ....
=> a - 22 = 0 => a = 22
Đúng cho mình cái nữa nha
Ta có:\(A=x^4-2x^3-x^2+ax+b\)
\(A=x^3\left(x-2\right)-x\left(x-a\right)+b\)
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
Ta có:A=x4−2x3−x2+ax+b
A=x3(x−2)−x(x−a)+b
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
\(P=x^4-2x^3-x^2+ax+b=\left[\pm\left(x^2+cx+d\right)\right]^2=\left(x^2+cx+d\right)^2\) (vì P là đa thức bậc 4, hệ số tự do là 1)
\(\Leftrightarrow P=x^4+c^2x^2+d^2+2cx^3+2dx^2+2cdx\)
\(\Leftrightarrow P=x^4+2cx^3+\left(c+2d\right)x^2+2cdx+d^2\)
2c = -2 c = -1
=> c2 + 2d = -1 => d = -1
a = 2cd a = 2
b = d2 b = 1
Vậy \(P=\left(x^2-x-1\right)^2\)
2x^2+3x+a=2x^2+3x+1,125+a-1,125
=(x√2+3/2√2)^2+a-1,125
Vậy để đa thức 2x^2+3x+a là bình phương của đa thức thì a-1,125=0
=>a=1,125
A=a^3+b^3+c^3+3(a+b)(b+c)(c+a)+a^3- b^3-c^3-3a(b+c)(a-b-c)+3bc(b+c)-6a(b^2+2...
nhân ra rồi triệt thì ra kết quả là A=8
Xin lỗi không để giải chi tiết đước .Dài quá, đánh mỏi hết cả tay
Theo bài ra:
\(f\left(x\right)=\left(g\left(x\right)\right)^2\)
<=> \(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+d\right)^2\)
<=> \(x^4+ax^3+bx^2-8x+4=x^4+c^2x^2+d^2+2.x^2.cx+2.cx.d+2x^2.d\)
<=> \(x^4+ax^3+bx^2-8x+4=x^4+2cx^3+\left(c^2+2d\right)x^2+2cdx+d^2\)
Cân bằng hệ số hai vế ta có:
\(\hept{\begin{cases}a=2c\\b=c^2+2d\\-8=2cd;4=d^2\end{cases}}\)
=> Tìm được a, b, c, d.
\(x^2+10x+a=x^2+2.x.5+25-25+a=\left(x+5\right)^2+a-25\)
Để x^2 + 10x + a là bình phương của một tổng
=> a - 25 = 0 => a = 25
Đúng cho mình nha bạn