Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 ∈ Q
3 \(\in\) R
3 \(\notin\) I
-2,53 \(\in\) Q
0,2(35) \(\notin\) I
N ⊂ Z
I ⊂ R.
a,3 ∈ Q
b,3 ∈ R
c,3 ∉ I
d,-2,53 ∈ Q
e,0,2(35) ∉ I
g,N ⊂ Z
h,I ⊂ R.
\(3\in Q\)
\(3\in R\)
\(3\notin I\)
\(-2,53\in Q\)
\(0,2\left(35\right)\notin I\)
\(N\subset Z\)
\(I\subset R\)
Câu 1:
Hình (chỉ mag t/c minh họa)
A B C E D
a) Xét \(\Delta ABE\) và \(\Delta DBE\) có:
\(AB=AD\left(gt\right)\)
\(\widehat{B_1}=\widehat{B_2}\) (BE là phân giác \(\widehat{B}\))
\(BE\) chung
\(\Rightarrow\Delta ABE=\Delta DBE\left(c.g.c\right)_{\left(1\right)}.\)
Từ \(_{\left(1\right)}\Rightarrow EA=ED\) (2 cạnh tương ứng).
Vậy..........
b) (chưa chắc đã đúng)
Từ \(_{\left(1\right)}\Rightarrow\widehat{A}=\widehat{BDE}\) (2 góc tương ứng)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (định lí tổng 3 góc của tam giác).
mà \(\widehat{B}=70^o\left(gt\right);\widehat{C}=50^o\left(gt\right).\)
\(\Rightarrow\widehat{A}=180^o-\widehat{B}-\widehat{C}.\)
\(\Rightarrow\widehat{A}=180^o-70^o-50^o.\)
\(\Rightarrow\widehat{A}=60^o.\)
mà \(\widehat{A}=\widehat{BDE}\left(cmt\right).\)
\(\Rightarrow\widehat{BDE}=60^o.\)
Vậy..........
\(Z\subset R\)
\(\sqrt{2013}\in R\)
\(-212\notin N\)
\(0,13\notin I\)
Hình bạn tự vẽ nha!
Bài 3:
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại \(A.\)
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân)
b) Vì \(BM=CN\left(gt\right).\)
=> \(BM+BC=BC+CN\)
=> \(MC=BN.\)
Xét 2 \(\Delta\) \(ABN\) và \(ACM\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
\(BN=CM\left(cmt\right)\)
=> \(\Delta ABN=\Delta ACM\) (c . g . c)
=> \(AN=AM\) (2 cạnh tương ứng).
c) Theo câu b) ta có \(AN=AM.\)
=> \(\Delta AMN\) cân tại \(A.\)
=> \(\widehat{M}=\widehat{N}\) (tính chất tam giác cân).
Xét 2 \(\Delta\) vuông \(EBM\) và \(FCN\) có:
\(\widehat{MEB}=\widehat{CFN}=90^0\left(gt\right)\)
\(\widehat{M}=\widehat{N}\left(cmt\right)\)
\(BM=CN\left(gt\right)\)
=> \(\Delta EBM=\Delta FCN\) (cạnh huyền - góc nhọn)
=> \(BE=CF\) (2 cạnh tương ứng).
=> \(ME=NF\) (2 cạnh tương ứng).
d) Đề là chứng minh \(AE=AF.\)
Ta có: \(\left\{{}\begin{matrix}AM=AN\left(cmt\right)\\ME=NF\left(cmt\right)\end{matrix}\right.\)
=> \(AM-ME=AN-NF.\)
=> \(AE=AF\left(đpcm\right).\)
Mình chỉ nghĩ thêm câu d) thôi nhé.
Chúc bạn học tốt!
Bài 1 :
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{z}=\frac{x+y+z}{y+z+x}=1\) ( Do \(x+y+z\ne0\) )
\(\Rightarrow x=y=z\)
Thay \(y\) và \(z\) bởi \(x\) ta được :
\(\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)
Vậy : \(\frac{x^{3333}.z^{6666}}{y^{9999}}=1\)
\(A.\in;\in\)
\(C.\in\)
\(D.\notin\)
\(E.\in\)
\(G.\in\)
Nhớ k cho mình nhé! Thank you!!!
b) rỗng
c) rỗng
d) N
e) N
f) Z
(cái nào nhỏ hơn thì lấy thôi)