Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{7}{11}< x-\dfrac{1}{7}< \dfrac{10}{13}\)
\(\Leftrightarrow\dfrac{7}{11}+\dfrac{1}{7}< x< \dfrac{10}{13}+\dfrac{1}{7}\)
hay 60/77<x<83/91
b: \(\dfrac{7}{9}< \dfrac{13}{11}-x< \dfrac{15}{16}\)
\(\Leftrightarrow\dfrac{-7}{9}>x-\dfrac{13}{11}>-\dfrac{15}{16}\)
\(\Leftrightarrow-\dfrac{7}{9}+\dfrac{13}{11}>x>\dfrac{-15}{16}+\dfrac{13}{11}\)
\(\Leftrightarrow\dfrac{40}{99}>x>\dfrac{43}{176}\)
bạn cứ tính 2 vế là xong mà:
a) x\(\in\){1;2;3;4;5;6;7}
b) x=0
\(\dfrac{9}{56}< \dfrac{a}{8}< \dfrac{b}{7}< \dfrac{13}{28}\)
\(\Leftrightarrow\dfrac{9}{56}< \dfrac{7a}{56}< \dfrac{8b}{7}< \dfrac{26}{56}\)
\(\Rightarrow9< 7a< 8b< 26\)
Mà a,b \(\in Z\)
\(\Rightarrow7a;8b\in Z\)
\(\Rightarrow7a\in\left\{14;21\right\}\Leftrightarrow a\in\left\{2;3\right\}\)
\(\Rightarrow8b\in\left\{8;16\right\}\Rightarrow8b\in\left\{1;2\right\}\)
Vậy chỉ có giá trị a = 2; b = 2 thỏa mãn yêu cầu đề bài.
Bn xét từng trương hợ hoăc uy ra vẫn đc nhé tại 7a < 8b
Giải
Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)
\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)
Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)
\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
D< 1 - \(\dfrac{1}{20}\)
D< \(\dfrac{19}{20}\)<1
\(\Rightarrow\)D< 1
Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1
A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)
A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)
\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)
Ta có :
\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)
\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :
\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)
\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)
A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1
A<\(\dfrac{49}{200}< \dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}\)
a) Vì -11 < -10 < -9 < -8 < -7 nên:
.
b) Quy đồng mẫu các phân số ta có:
Vì -12 < -11 < -10 < -9 nên ta có:
hay
a) Vì -11 < -10 < -9 < -8 < -7 nên:
.
b) Quy đồng mẫu các phân số ta có:
Vì -12 < -11 < -10 < -9 nên ta có:
hay