Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(3^{20}=\left(3^{2.10}\right)=\left(3^2\right)^{10}=9^{10}\)
Vì 9^10 > 8^10 nên 2^30< 3^20
a. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)\)
\(=1-1+1-1+...+1-1\)
\(=0\)
b. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...-1\)
\(=1-1+1-1+...+1-1\)
\(=0\)
a)\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(3.2\right)^8.2^2.5}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+3^8.2^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+3^8.2^{10}.5}\)
\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}=\frac{-2}{6}=\frac{-1}{3}\)
b) đặt A=2100 - 299 + 298 - 297 +...+ 22 - 2
=>2A=2101-2100+299-298+...+23-22
=>2A+A=2101-2100+299-298+...+23-22+2100 - 299 + 298 - 297 +...+ 22 - 2
=>3A=2101-2
=>A=\(\frac{2^{101}-2}{3}\)
Ta có :
\(2^{100}=\left(2^{20}\right)^5=1048576^5\)
\(3^{65}=\left(3^{13}\right)^5=1594323^5\)
vÌ \(1048576^5< 1594323^5\Leftrightarrow2^{100}< 3^{65}\)
\(\left\{{}\begin{matrix}2^{100}=\left(2^{20}\right)^5=1048576^5\\3^{65}=\left(3^{13}\right)^5=1594323^5\end{matrix}\right.\)
mà \(1048576< 1594323\) nên \(2^{100}< 3^{65}\)
vậy điền dấu " < "
\(2^{98}< 5^{47}\)