Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này dễ ợt
\(\left(1+1+1\right)!=6\)
\(2+2+2=6\)
\(3\times3-3=6\)
\(\sqrt{4}+\sqrt{4}+\sqrt{4}=6\)
\(5+5:5=6\)
\(6-6+6=6\)
\(7-7:7=6\)
\(\sqrt{\left(8+8:8\right)}!=6\)
\(\sqrt{9}\times\sqrt{9}-\sqrt{9}=6\)
\(\sqrt{\left(10-10:10\right)}!=6\)
\(\left(1+1+1\right)!=6\)
\(2+2+2=6\)
\(3\times3-3=6\)
\(\sqrt[]{4}+\sqrt{4}+\sqrt[]{4}=6\)
\(5+\left(5\div5\right)=6\)
\(6\times6\div6=6\)
\(7-\left(7\div7\right)=6\)
\(\sqrt{\left(8\div8\right)+8}!=6\)
\(\left(9-9\right)+\sqrt{9}!=6\)
\(\sqrt{10-\left(10\div10\right)}!=6\)
\(\left(9-9\right)+\sqrt{9}!=6\)
\(\dfrac{8}{9}:\dfrac{3}{7}=\dfrac{56}{27}\\ \dfrac{8}{9}+\dfrac{2}{5}=\dfrac{58}{45}\\ \dfrac{7}{8}-\dfrac{1}{3}=\dfrac{13}{24}\\ \dfrac{3}{10}\times\dfrac{1}{6}=\dfrac{1}{20}\\ 1\dfrac{2}{7}+6\dfrac{5}{6}=\dfrac{9}{7}+\dfrac{41}{6}=\dfrac{341}{42}\\ 5\dfrac{3}{4}-\dfrac{1}{5}=\dfrac{23}{4}-\dfrac{1}{5}=\dfrac{111}{20}\\ 6\dfrac{2}{9}:4\dfrac{7}{10}=\dfrac{56}{9}:\dfrac{47}{10}=\dfrac{560}{423}\\ \dfrac{5}{3}+\dfrac{3}{2}-\dfrac{7}{6}=2\)
1.3.77−1+3.7.99−3+7.9.1313−7+9.13.1515−9+\frac{19-13}{13.15.19}+13.15.1919−13
=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}=1.31−3.71+3.71−7.91+7.91−9.131+9.131−13.151+13.151−15.191
=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}=1.31−15.191=28595−2851=28594
b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)b,=61.(1.3.76+3.7.96+7.9.136+9.13.156+13.15.196)
làm giống như trên
c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)c,=81.(1.2.31+2.3.41+3.4.51+...+48.49.501)
=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)=161.(1.2.32+2.3.42+3.4.52+...+48.49.502)
=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)=161.(1.2.33−1+2.3.44−2+3.4.55−3+...+48.49.5050−48)
=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)=161.(1.21−2.31+2.31−3.41+3.41−4.51+...+48.491−49.501)
=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}=161.(21−24501)=161.(24501225−24501)=4900153
d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)d,=75.(1.5.87+5.8.127+8.12.157+...+33.36.407)
=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)=75.(1.5.88−1+5.8.1212−5+8.12.1515−8+...+33.36.4040−33)
=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)=75.(1.51−5.81+5.81−8.121+8.121−12.151+...+33.361−36.401)
=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}=75.(51−14401)=75.(1440288−14401)=28841
P/S: . là nhân nha
mình nghĩ là : 1/2 < 2/3 < 3/4 < 4/5 < 5/6 < 6/7 < 7/8 < 8/9 < 9/10
(1+1+1)!=6
2+2+2=6
3x3-3=6
\(\sqrt{4}\)+\(\sqrt{4}\)+\(\sqrt{4}\)=6
5+5:5=6
6+6-6=6
7-7:7=6
\(\sqrt{8+8:8}\)!=6
\(\sqrt{9}\)x\(\sqrt{9}\)-\(\sqrt{9}\)=6
\(\sqrt{10-10:10}\)!=6