Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL
3y - x
Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!
\(\frac{x}{x+3}=\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{x^2-3x}{x^2-9}\)
VẬy ta điền x^2 - 3x vào chỗ ....
Đặt chỗ trống cần tìm là a
Ta có : \(\frac{a}{x^2-9}=\frac{x}{x+3}\Leftrightarrow\frac{a}{\left(x-3\right)\left(x+3\right)}=\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
Khử mẫu : \(a=x\left(x-3\right)=x^2-3x\)
Vậy chỗ trống cần tìm là x^2 - 3x
Gọi \(P\) là đa thức cần tìm.
Ta có:
\(\frac{x^5-1}{x^2-1}=\frac{\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x^4+x^3+x^2+x+1}{x+1}\)
Vậy, \(P=x^4+x^3+x^2+x+1\)
tính chất quan trọng phần thức với
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\Rightarrow c=\dfrac{ad}{b}\)áp vào
\(\dfrac{x^5-1}{x^2-1}=\dfrac{A}{x+1}\Rightarrow A=\dfrac{\left(x^5-1\right)\left(x+1\right)}{x^2-1}\) {x khác +-1}
\(A=\dfrac{\left(x^5-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left[\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)\right]\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\left(x^4+x^3+x^2+x+1\right)\)
Vậy đa thức cần điền là
\(A=\left(x^4+x^3+x^2+x+1\right)\)
a)\(\dfrac{x+5}{3x-2}=\dfrac{x\left(x+5\right)}{x\left(3x-2\right)}\) b)\(\dfrac{2x-1}{4}=\dfrac{\left(2x-1\right)\left(2x+1\right)}{8x+4}\) c)\(\dfrac{2x\left(x-2\right)}{x^2-4x+4}=\dfrac{2x}{x-2}\) d) \(\dfrac{5x^2+10x}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x}{x-2}\)
(x-\(\frac{1}{x}\))2=x2 -2 +\(\frac{1}{x^2}\)
Trả lời:
\(\left(x-\frac{1}{x}\right)^2=x^2-2.x.\frac{1}{x}+\left(\frac{1}{x}\right)^2=x^2-2x\frac{1}{x}+\frac{1}{x^2}\)( HĐT thứ 2 )
Vậy đơn thức thích hợp điền vào chỗ trống là: \(2x\frac{1}{x}\)