Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Hàm số cắt trục tung tại điểm có tung độ là 3
\(\Rightarrow x=0;y=3\) thay vào hàm số ta được:
\(3=-0+m\Leftrightarrow m=3\)
Vậy m=3
b)Hàm số cắt trục hoành tại điểm có hoành độ là -1
\(\Rightarrow x=-1;y=0\) thay vào hàm số ta được:
\(0=-1+m\Leftrightarrow m=1\)
Vậy m=1
a. Để đồ thị qua A
\(\Rightarrow-1=-3m+m-1\)
\(\Leftrightarrow m=0\)
b. Để đồ thị cắt trục tung tại điểm có tung độ 2
\(\Rightarrow m-1=2\)
\(\Leftrightarrow m=3\)
c. Để đồ thị cắt trục hoành tại điểm có hoành độ 3
\(\Rightarrow0=3m+m-1\)
\(\Leftrightarrow m=\dfrac{1}{4}\)
Câu 2:
Thay x=0 và y=-3 vào (d), ta được:
m+2=-3
hay m=-5
Cho hàm số y=(a-1)x +a
a, Tìm a để hàm số cắt trục tung tại điểm có tung độ là 2
Tung độ y = 2 => x = 0. Thay vào hàm số ta được: a = 2
b, Tìm a để hàm số cắt trục hoành tại điểm có hành độ là -3
Hoành độ x =- 3 => y = 0. Thay vào hàm số ta được:
-3(a - 1) + a = 0
<=> -3a + 3 + a = 0
<=> -2a = -3
<=> a = 3/2
Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả.
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1).
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2.
Giao điểm của hai đường tiệm cận là I(1; 2).
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)²
m = 1/(x - 1)²
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là
m' = dy/dx = -1/(x - 1)²
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là
mm' = -1
-1/(x - 1)^4 = -1
(x - 1)^4 = 1
(x - 1)² = 1
x - 1 = ±1
x = 0 hay x = 2
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)