Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M thuộc đường thẳng y = 3x + 4 => gọi M (m; 3m+4)
Khoảng cách từ M đến Ox bằng |3m + 4|
theo đề bài => |3m+4| = 2
<=> 3m + 4 = 2 hoặc 3m + 4 = -2
+) 3m + 4 = 2 <=> m = -2/3
+) 3m + 4 = -2 => m = -2
Vậy M (-2/3; 2); M (-2; -2)
Lời giải:
Để $(P)$ đi qua $A(-\sqrt{3}, -3)$ thì:
$-3=(m-1)(-\sqrt{3})^2$
$\Leftrightarrow -3=(m-1).3\Leftrightarrow m-1=-1\Leftrightarrow m=0$
Khi đó:
$(P): y=-x^2$; $(d):y=2x-1$.
Hình vẽ đồ thị hàm số:
Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì m=m-3
hay \(m\in\varnothing\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
ai bt giúp mk vs
Vì M cách trục hoành một khoảng = 3 => \(\orbr{\begin{cases}y_m=3\\y_m=-3\end{cases}}\)
* Với \(y_m=3\Rightarrow x_m=\frac{3-1}{2}=1\)=> \(M_1(1;3)\)
* Với \(y_m=-3\Rightarrow x_m=\frac{-3-1}{2}=-2\)=> \(M_2(-2;-3)\)