K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

Do A' đối xứng với A qua O nên O là trung điểm của AA' ⇒ OA = OA' = R

⇒ A' cũng thuộc đường tròn (O)

5 tháng 7 2018

Do A' đối xứng với A qua O nên O là trung điểm của AA' ⇒ OA = OA' = R

⇒ A' cũng thuộc đường tròn (O)

22 tháng 8 2017

Do C và C' đối xứng nhau qua AB nên AB là đường trung trực của CC'

⇒ O nằm trên đường trung trực của CC'

⇒ OC = OC' = R

⇒ C' cũng thuộc đường tròn (O)

18 tháng 7 2019

Do C và C' đối xứng nhau qua AB nên AB là đường trung trực của CC'

⇒ O nằm trên đường trung trực của CC'

⇒ OC = OC' = R

⇒ C' cũng thuộc đường tròn (O)

13 tháng 5 2018

a. AB là tiếp tuyến của đt (O) tại B (gt) => \(\widehat{OBA}=90^o\)

AC là tiếp tuyến của đt (O) tại C (gt) => \(\widehat{OCA}=90^o\)

Xét tứ giác ABOC có: \(\widehat{OBA}+\widehat{OCA}=90^o+90^o=180^o\)=> Tứ giác ABOC nội tiếp đường tròn (Dhnb) => Đpcm

b. 

Xét đt (O) có: \(\widehat{ABD}=\frac{1}{2}sđ\widebat{BD}\)(T/c góc tạo bởi tiếp tuyến và dây cung)

\(\widehat{BED}=\widehat{BEA}=\frac{1}{2}sđ\widebat{BD}\)(T/c góc nội tiếp của đt) (Do A,D,E (gt) => \(\widehat{BED}=\widehat{BEA}\))

=> \(\widehat{ABD}=\widehat{BEA}\)

Xét \(\Delta ABD\)và \(\Delta AEB\)có:

\(\widehat{A}chung\)

\(\widehat{ABD}=\widehat{BEA}\left(cmt\right)\)

=> \(\Delta ABD~\Delta AEB\left(g.g\right)\)=> \(\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AB^2=AD.AE\RightarrowĐpcm\)

c. Vì F là điểm đối xứng của D qua OA => OA là đường trung trực của DF (Đ/n đối xứng trục) => OD = OF = R (T/c điểm thuộc đường trung trực) => F \(\in\left(O\right)\)và \(\Delta ODF\)cân tại O (Đ/n) => OA vừa là đường trung trực của đoạn thẳng DF đồng thời là đường phân giác của \(\widehat{DOF}\)(T/c của \(\Delta\)cân)=> \(\widehat{DOA}=\widehat{FOA}=\frac{1}{2}\widehat{DOF}=\frac{1}{2}sđ\widebat{DF}\)

Xét đt (O) có: \(\widehat{DEF}=\frac{1}{2}sđ\widebat{DF}\)(T/c góc nội tiếp) => \(\widehat{DOA}=\widehat{DEF}\)(1)

Ta có: AB,AC lần lượt là 2 tiếp tuyến của đt (O) (B,C là 2 tiếp điểm) (gt) => OA là tia phân giác của \(\widehat{BOC}\)(Định lý về 2 tiếp tuyến cắt nhau)

Lại có: OB = OC = R => \(\Delta OBC\)cân tại O (Đ/n) => OA vừa là phân giác đồng thời là đường cao của \(\Delta OBC\)(T/c của \(\Delta\)cân)=> \(OA\perp BC\)tại H (H là giao điểm của OA và BC)

Áp dụng hệ thức lượng trong \(\Delta\)vuông ABO (vuông tại B) với đường cao BH ta được: \(AB^2=AH.AO\)

Mà \(AB^2=AD.AE\left(cmt\right)\)=> \(AD.AE=AH.AO\Leftrightarrow\frac{AD}{AO}=\frac{AH}{AE}\)

Xét \(\Delta AHD\)và \(\Delta AEO\)có:

\(\widehat{A}\)chung

\(\frac{AD}{AO}=\frac{AH}{AE}\left(cmt\right)\)

=> \(\Delta AHD~\Delta AEO\left(c.g.c\right)\)=> \(\widehat{AHD}=\widehat{AEO}=\widehat{DEO}\left(Do\overline{A,D,E}\Rightarrow\widehat{AEO}=\widehat{DEO}\right)\)=> Tứ giác DEOH là tứ giác nội tiếp (Dhnb) => \(\widehat{DEH}=\widehat{DOH}=\widehat{DOA}\)(2 góc nội tiếp cùng chắn \(\widebat{DH}\)) (Do A,H,O => \(\widehat{DOH}=\widehat{DOA}\)) (2)

Từ (1) và (2) => \(\widehat{DEF}=\widehat{DEH}\)=> 3 điểm E,F,H thẳng hàng ( 2 góc cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau) => Đpcm. 

13 tháng 5 2018

bn con cau may chuabt lam zay

Bạn nào giúp mình bài này với =))1.  Cho đường tròn (O;R) và (O' ; R') tiếp xúc ngoài tại M ( R > R' ) .Vẽ các đường kính MOA và MO'B . Gọi H là trung điểm của AB , vẽ dây CD của đương tròn (O) vuông góc với AB tại H.a) Tứ giác ACBD là hình gì ? b) Gọi I là giao điểm của DB với đường tròn (O') . Chứng minh CM vuông góc với DB . Suy ra 3 điểm C, M, I thẳng hàng c) Chứng minh HI là tiếp tuyến của...
Đọc tiếp

Bạn nào giúp mình bài này với =))

1.  Cho đường tròn (O;R) và (O' ; R') tiếp xúc ngoài tại M ( R > R' ) .Vẽ các đường kính MOA và MO'B . Gọi H là trung điểm của AB , vẽ dây CD của đương tròn (O) vuông góc với AB tại H.

a) Tứ giác ACBD là hình gì ? 

b) Gọi I là giao điểm của DB với đường tròn (O') . Chứng minh CM vuông góc với DB . Suy ra 3 điểm C, M, I thẳng hàng 

c) Chứng minh HI là tiếp tuyến của đường trong ( O')

2. Cho tam giác OAO' vuông tại A ( O'A < OA ) . Vẽ hai đường tròn ( O; OA ) và (O' ; O'A ).

a) Chứng minh 2 đường trong (O) và (O') cắt nhau 

b) Gọi B là giao điểm ( khác A ) của 2 đường tròn ( O ) và (O') . Chứng minh đường thẳng OB là tiếp tuyến của đường tròn (O')

c) Gọi I là trung điểm của OO' và C là điểm đối xứng của A qua I . Chứng minh tứ giác OO'BC là hình thang cân .

0
 * Đồ thị hàm số, hàm số, đồ thị. Mấy cái này khác nhau như thế nào vậy ạ? Lấy ví dụ giúp mình nhá! *Tìm tọa độ giao điểm của 2 đồ thị + Tọa độ giao điểm của 2 đồ thị nghĩa là như nào ạ?+ Nếu làm theo cách  vẽ đồ thị thì đối với trường hợp nào. Và cách giải theo vẽ đồ thị hàm số như nào ạ? + Với nhiều hàm số trở lên thì làm như nào ạ? + Hoành độ giao...
Đọc tiếp

 

* Đồ thị hàm số, hàm số, đồ thị. Mấy cái này khác nhau như thế nào vậy ạ? Lấy ví dụ giúp mình nhá! 

*Tìm tọa độ giao điểm của 2 đồ thị 

+ Tọa độ giao điểm của 2 đồ thị nghĩa là như nào ạ?

+ Nếu làm theo cách  vẽ đồ thị thì đối với trường hợp nào. Và cách giải theo vẽ đồ thị hàm số như nào ạ? 

+ Với nhiều hàm số trở lên thì làm như nào ạ? 

+ Hoành độ giao điểm của 2 đồ thị là nghiệm của phương trình. Tại sao là hoành độ giao điểm mà không phải tung độ giao điểm ạ? 

+ Ví dụ y= -2x+3 (d1). Mình gọi (d1) là đường thẳng. Đường thẳng này khác với hàm số như nào ạ. Ví dụ thay x = 2 vào (d1) thì không đung mà phải nói thay x = 2 vào y = -2x+3 thì mới đúng ạ? Mà mình đặt hàm số đó là đường thẳng (d1) vậy tại sao khác nhau như nào ạ? 

 

 

 

3
AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Lời giải:

Nói đơn giản thế này. Khi đề cho: Cho đồ thị hàm số $y=x+2$

- Hàm số: chính là $y=x+2$, biểu diễn mối quan hệ giữa biến $x$ và biến $y$. Hàm số hiểu đơn giản giống như phép biểu diễn mối quan hệ giữa hai biến.

- Đồ thị hàm số (hay đồ thị): Khi có hàm số rồi, người ta muốn biểu diễn nó trên mặt phẳng tọa độ ra được 1 hình thù nào đó thì đó là đồ thị hàm số. Ví dụ, đths $y=x+2$ có dạng như thế này:

 


 

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

- Tọa độ giao điểm của hai đồ thị: Khi ta vẽ được đồ thị trên mặt phẳng tọa độ, 2 đồ thị đó giao nhau ở vị trí nào thì đó chính là tọa độ giao điểm. Ví dụ, trên mp tọa độ ta có 2 đồ thị $y=-2x+3$ và $y=x+6$ chả hạn. Điểm $A$, có tọa độ $(-1,5)$ chính là giao điểm. Như vậy, $(-1,5)$ là tọa độ giao điểm.

- Nhìn hình vẽ của đồ thị chỉ giúp ta có cái nhìn trực quan hơn. Khi muốn tìm giao điểm của 2 đồ thị hàm số, người ta thường dùng hàm số để tìm cho nhanh, vì hàm số biểu diễn mối quan hệ giữa hai biến một cách "số hóa" hơn.

- Với nhiều hàm số trở lên thì ta cứ xét từng cặp 1 thôi.