K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

Điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến ABC vầ AMN, BN cắt CM tại S

Cmr

a, ^A+^BSM=2^CBN

b, AM. AN= AB.AC

22 tháng 4 2020

O A B F D I K H C E

22 tháng 4 2020

a.Ta có DE là đường kính của (O) 

\(\Rightarrow EF\perp DF\)

Mà \(DE\perp BC=K\Rightarrow\widehat{EKI}=\widehat{EFD}=90^0\)

=> DFIK nội tiếp 

b ) Ta có : 

\(AK\perp DE,EF\perp DF\)

\(\Rightarrow\widehat{AFE}=\widehat{AKE}=90^0\)

\(\Rightarrow AFKE\) nội tiếp 

Mà IK = HK , \(DE\perp BC=K\) => DE là trung trực của HI 

 \(\Rightarrow\widehat{DHA}=\widehat{DHK}=\widehat{DIK}=\widehat{DFK}=\widehat{DEA}\)

c ) Ta có : \(\widehat{EIK}=\widehat{DAK}\)do AFKE nội tiếp

\(\widehat{AKD}=\widehat{EKI}=90^0\)

\(\Rightarrow\Delta AKD~\Delta EKI\left(g.g\right)\)

\(\Rightarrow\frac{AK}{EK}=\frac{KD}{KI}\)

\(\Rightarrow KE.KD=KI.AK\)

Lại có : \(\widehat{AFI}=\widehat{AKD}=90^0\Rightarrow\Delta AFI~\Delta AKD\left(g.g\right)\)

\(\Rightarrow\frac{AF}{AK}=\frac{AI}{AD}\Rightarrow AE.AD=AI.AK\)

Mà BCDF nội tiếp 

\(\Rightarrow\widehat{AFB}=\widehat{ACD}\Rightarrow\Delta ABF~\Delta ADC\left(g.g\right)\)

\(\Rightarrow\frac{AF}{AC}=\frac{AB}{AD}\Rightarrow AF.AD=AB.AC\)

\(\Rightarrow AB.AC=AI.AK\)

=> KI.AB.AC = AI.AK.KI= AI.KE.KD

22 tháng 1 2021

O N H E M D P

a) MN là tiếp tuyến đường tròn (O) \(\Rightarrow\widehat{MNP}=90^o\)

DO = ON = OP => \(DO=\frac{1}{2}NP\Rightarrow\widehat{NDP}=90^o\)

- Aps dụng hệ thức lượng cho tam giác MNP vuông tại N đường cao ND , ta có :

MN2 = MD . MP ( đpcm )

b) Ta có : PE // OM => PE // OH

Mà O là trung điểm của NP => OH là đường trung bình của tam giác ENP

=> H là trung điểm NE

Vậy : HN = HE ( đpcm )

c) Theo ( c/m câu b ) : HN = HE => \(HE\perp OM\)

Áp dung hệ thức trong tam giác NMO vuông tại N , đường cao NH :

Ta có : ON2 = OM . OH => OP2 = OM . OH

\(\Rightarrow\frac{OP}{OM}=\frac{OH}{OP}\left(1\right)\)

- Xét 2 tam giác: OHP và OPM

có : \(\frac{OP}{OM}=\frac{OH}{OP}\left(theo\left(1\right)\right)\)

       \(\widehat{O}\)là góc chung

Do đó : \(\Delta OHP~\Delta OPM\left(c-g-c\right)\)

\(\Rightarrow\widehat{OPH}=\widehat{OMP}\left(đpcm\right)\)

1 tháng 5 2018


A O E M N F B H K

1 tháng 5 2018

bài lm đou bn